LCOV - code coverage report
Current view: top level - EnergyPlus - ChillerElectricASHRAE205.cc (source / functions) Hit Total Coverage
Test: lcov.output.filtered Lines: 549 783 70.1 %
Date: 2024-08-23 23:50:59 Functions: 13 13 100.0 %

          Line data    Source code
       1             : // EnergyPlus, Copyright (c) 1996-2024, The Board of Trustees of the University of Illinois,
       2             : // The Regents of the University of California, through Lawrence Berkeley National Laboratory
       3             : // (subject to receipt of any required approvals from the U.S. Dept. of Energy), Oak Ridge
       4             : // National Laboratory, managed by UT-Battelle, Alliance for Sustainable Energy, LLC, and other
       5             : // contributors. All rights reserved.
       6             : //
       7             : // NOTICE: This Software was developed under funding from the U.S. Department of Energy and the
       8             : // U.S. Government consequently retains certain rights. As such, the U.S. Government has been
       9             : // granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
      10             : // worldwide license in the Software to reproduce, distribute copies to the public, prepare
      11             : // derivative works, and perform publicly and display publicly, and to permit others to do so.
      12             : //
      13             : // Redistribution and use in source and binary forms, with or without modification, are permitted
      14             : // provided that the following conditions are met:
      15             : //
      16             : // (1) Redistributions of source code must retain the above copyright notice, this list of
      17             : //     conditions and the following disclaimer.
      18             : //
      19             : // (2) Redistributions in binary form must reproduce the above copyright notice, this list of
      20             : //     conditions and the following disclaimer in the documentation and/or other materials
      21             : //     provided with the distribution.
      22             : //
      23             : // (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
      24             : //     the University of Illinois, U.S. Dept. of Energy nor the names of its contributors may be
      25             : //     used to endorse or promote products derived from this software without specific prior
      26             : //     written permission.
      27             : //
      28             : // (4) Use of EnergyPlus(TM) Name. If Licensee (i) distributes the software in stand-alone form
      29             : //     without changes from the version obtained under this License, or (ii) Licensee makes a
      30             : //     reference solely to the software portion of its product, Licensee must refer to the
      31             : //     software as "EnergyPlus version X" software, where "X" is the version number Licensee
      32             : //     obtained under this License and may not use a different name for the software. Except as
      33             : //     specifically required in this Section (4), Licensee shall not use in a company name, a
      34             : //     product name, in advertising, publicity, or other promotional activities any name, trade
      35             : //     name, trademark, logo, or other designation of "EnergyPlus", "E+", "e+" or confusingly
      36             : //     similar designation, without the U.S. Department of Energy's prior written consent.
      37             : //
      38             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
      39             : // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
      40             : // AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
      41             : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      42             : // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
      43             : // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      44             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
      45             : // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
      46             : // POSSIBILITY OF SUCH DAMAGE.
      47             : 
      48             : // C++ Headers
      49             : #include <cassert>
      50             : #include <cmath>
      51             : #include <string>
      52             : 
      53             : // ObjexxFCL Headers
      54             : #include <ObjexxFCL/Fmath.hh>
      55             : 
      56             : // EnergyPlus Headers
      57             : #include "rs0001_factory.h"
      58             : #include <EnergyPlus/Autosizing/All_Simple_Sizing.hh>
      59             : #include <EnergyPlus/BranchNodeConnections.hh>
      60             : #include <EnergyPlus/ChillerElectricASHRAE205.hh>
      61             : #include <EnergyPlus/CurveManager.hh>
      62             : #include <EnergyPlus/Data/EnergyPlusData.hh>
      63             : #include <EnergyPlus/DataBranchAirLoopPlant.hh>
      64             : #include <EnergyPlus/DataEnvironment.hh>
      65             : #include <EnergyPlus/DataHVACGlobals.hh>
      66             : #include <EnergyPlus/DataHeatBalance.hh>
      67             : #include <EnergyPlus/DataIPShortCuts.hh>
      68             : #include <EnergyPlus/DataLoopNode.hh>
      69             : #include <EnergyPlus/DataSizing.hh>
      70             : #include <EnergyPlus/DataSystemVariables.hh>
      71             : #include <EnergyPlus/EMSManager.hh>
      72             : #include <EnergyPlus/EnergyPlusLogger.hh>
      73             : #include <EnergyPlus/FaultsManager.hh>
      74             : #include <EnergyPlus/FileSystem.hh>
      75             : #include <EnergyPlus/FluidProperties.hh>
      76             : #include <EnergyPlus/General.hh>
      77             : #include <EnergyPlus/GeneralRoutines.hh>
      78             : #include <EnergyPlus/GlobalNames.hh>
      79             : #include <EnergyPlus/HeatBalanceInternalHeatGains.hh>
      80             : #include <EnergyPlus/InputProcessing/InputProcessor.hh>
      81             : #include <EnergyPlus/NodeInputManager.hh>
      82             : #include <EnergyPlus/OutAirNodeManager.hh>
      83             : #include <EnergyPlus/OutputProcessor.hh>
      84             : #include <EnergyPlus/OutputReportPredefined.hh>
      85             : #include <EnergyPlus/Plant/DataPlant.hh>
      86             : #include <EnergyPlus/Plant/PlantLocation.hh>
      87             : #include <EnergyPlus/PlantUtilities.hh>
      88             : #include <EnergyPlus/ScheduleManager.hh>
      89             : #include <EnergyPlus/UtilityRoutines.hh>
      90             : #include <EnergyPlus/ZoneTempPredictorCorrector.hh>
      91             : 
      92             : namespace EnergyPlus::ChillerElectricASHRAE205 {
      93             : 
      94             : constexpr std::array<std::string_view, static_cast<int>(AmbientTempIndicator::Num) - 1> AmbientTempNamesUC{
      95             :     "SCHEDULE",
      96             :     "ZONE",
      97             :     "OUTDOORS",
      98             : };
      99             : 
     100             : std::map<std::string, Btwxt::InterpolationMethod> InterpMethods = // NOLINT(cert-err58-cpp)
     101             :     {{"LINEAR", Btwxt::InterpolationMethod::linear}, {"CUBIC", Btwxt::InterpolationMethod::cubic}};
     102             : 
     103           3 : void getChillerASHRAE205Input(EnergyPlusData &state)
     104             : {
     105             :     static constexpr std::string_view RoutineName("getChillerASHRAE205Input: "); // include trailing blank space
     106             : 
     107             :     using namespace tk205;
     108           3 :     RSInstanceFactory::register_factory("RS0001", std::make_shared<RS0001Factory>());
     109             : 
     110           3 :     bool ErrorsFound{false};
     111             : 
     112           3 :     state.dataIPShortCut->cCurrentModuleObject = ChillerElectricASHRAE205::ASHRAE205ChillerSpecs::ObjectType;
     113           3 :     auto &ip = state.dataInputProcessing->inputProcessor;
     114           3 :     int numElectric205Chillers = ip->getNumObjectsFound(state, state.dataIPShortCut->cCurrentModuleObject);
     115             : 
     116           3 :     if (numElectric205Chillers <= 0) {
     117           0 :         ShowSevereError(state, format("No {} equipment specified in input file", state.dataIPShortCut->cCurrentModuleObject));
     118           0 :         ErrorsFound = true;
     119             :     }
     120             : 
     121           3 :     state.dataChillerElectricASHRAE205->Electric205Chiller.allocate(numElectric205Chillers);
     122             : 
     123           3 :     auto const &ChillerInstances = ip->epJSON.find(state.dataIPShortCut->cCurrentModuleObject).value();
     124           3 :     int ChillerNum{0};
     125           3 :     auto const &objectSchemaProps = ip->getObjectSchemaProps(state, state.dataIPShortCut->cCurrentModuleObject);
     126           8 :     for (auto &instance : ChillerInstances.items()) {
     127           5 :         auto const &fields = instance.value();
     128           5 :         std::string const &thisObjectName = instance.key();
     129           5 :         GlobalNames::VerifyUniqueChillerName(
     130          10 :             state, state.dataIPShortCut->cCurrentModuleObject, thisObjectName, ErrorsFound, state.dataIPShortCut->cCurrentModuleObject + " Name");
     131             : 
     132           5 :         ++ChillerNum;
     133           5 :         auto &thisChiller = state.dataChillerElectricASHRAE205->Electric205Chiller(ChillerNum);
     134           5 :         thisChiller.Name = Util::makeUPPER(thisObjectName);
     135             : 
     136           5 :         ip->markObjectAsUsed(state.dataIPShortCut->cCurrentModuleObject, thisObjectName);
     137             : 
     138          10 :         std::string const rep_file_name = ip->getAlphaFieldValue(fields, objectSchemaProps, "representation_file_name");
     139          10 :         fs::path rep_file_path = DataSystemVariables::CheckForActualFilePath(state, fs::path(rep_file_name), std::string(RoutineName));
     140           5 :         if (rep_file_path.empty()) {
     141           0 :             ErrorsFound = true;
     142             :             // Given that several of the following expressions require the representation file to be present, we'll just throw a fatal here.
     143             :             // The ErrorsFound flag is still set to true here so that in the future, if we defer the fatal until later in this routine, it will still
     144             :             // be set The CheckForActualFilePath function emits some nice information to the ERR file, so we just need a simple fatal here
     145           0 :             ShowFatalError(state, "Program terminates due to the missing ASHRAE 205 RS0001 representation file.");
     146             :         }
     147             :         // Since logger context must persist across all calls to libtk205/btwxt, it must be a member
     148           5 :         thisChiller.LoggerContext = {&state, format("{} \"{}\"", state.dataIPShortCut->cCurrentModuleObject, thisObjectName)};
     149          10 :         thisChiller.Representation = std::dynamic_pointer_cast<tk205::rs0001_ns::RS0001>(
     150          15 :             RSInstanceFactory::create("RS0001", FileSystem::toString(rep_file_path).c_str(), std::make_shared<EnergyPlusLogger>()));
     151           5 :         if (nullptr == thisChiller.Representation) {
     152           0 :             ShowSevereError(state, format("{} is not an instance of an ASHRAE205 Chiller.", rep_file_path));
     153           0 :             ErrorsFound = true;
     154             :         }
     155           5 :         thisChiller.Representation->performance.performance_map_cooling.get_logger()->set_message_context(&thisChiller.LoggerContext);
     156           5 :         thisChiller.Representation->performance.performance_map_standby.get_logger()->set_message_context(&thisChiller.LoggerContext);
     157           5 :         thisChiller.InterpolationType =
     158           5 :             InterpMethods[Util::makeUPPER(ip->getAlphaFieldValue(fields, objectSchemaProps, "performance_interpolation_method"))];
     159             : 
     160           5 :         const auto &compressorSequence = thisChiller.Representation->performance.performance_map_cooling.grid_variables.compressor_sequence_number;
     161             :         // minmax_element is sound but perhaps overkill; as sequence numbers are required by A205 to be in ascending order
     162          10 :         const auto minmaxSequenceNum = std::minmax_element(compressorSequence.begin(), compressorSequence.end());
     163           5 :         thisChiller.MinSequenceNumber = *(minmaxSequenceNum.first);
     164           5 :         thisChiller.MaxSequenceNumber = *(minmaxSequenceNum.second);
     165             : 
     166           5 :         if (fields.count("rated_capacity")) {
     167           0 :             ShowWarningError(state, format("{}{}=\"{}\"", std::string{RoutineName}, state.dataIPShortCut->cCurrentModuleObject, thisChiller.Name));
     168           0 :             ShowContinueError(state, "Rated Capacity field is not yet supported for ASHRAE 205 representations.");
     169             :         }
     170             : 
     171           5 :         thisChiller.RefCap = 0.0;               // ip->getRealFieldValue(fields, objectSchemaProps, "rated_capacity");
     172           5 :         thisChiller.RefCapWasAutoSized = false; // for now
     173             : 
     174             :         //        if (thisChiller.RefCap == DataSizing::AutoSize) {
     175             :         //            thisChiller.RefCapWasAutoSized = true;
     176             :         //        }
     177             :         //        if (thisChiller.RefCap == 0.0) {
     178             :         //            ShowSevereError(
     179             :         //                state, format("{}{}=\"{}\"",std::string{RoutineName},state.dataIPShortCut->cCurrentModuleObject,thisChiller.Name);
     180             :         //            ShowContinueError(state, format("Invalid {}={:.2R}", "Rated Capacity", thisChiller.RefCap));
     181             :         //            ErrorsFound = true;
     182             :         //        }
     183             : 
     184          10 :         std::string const evap_inlet_node_name = ip->getAlphaFieldValue(fields, objectSchemaProps, "chilled_water_inlet_node_name");
     185          10 :         std::string const evap_outlet_node_name = ip->getAlphaFieldValue(fields, objectSchemaProps, "chilled_water_outlet_node_name");
     186           5 :         if (evap_inlet_node_name.empty() || evap_outlet_node_name.empty()) {
     187           0 :             ShowSevereError(state, format("{}{}=\"{}\"", std::string{RoutineName}, state.dataIPShortCut->cCurrentModuleObject, thisChiller.Name));
     188           0 :             ShowContinueError(state, "Evaporator Inlet or Outlet Node Name is blank.");
     189           0 :             ErrorsFound = true;
     190             :         }
     191           5 :         thisChiller.EvapInletNodeNum = NodeInputManager::GetOnlySingleNode(state,
     192             :                                                                            evap_inlet_node_name,
     193             :                                                                            ErrorsFound,
     194             :                                                                            DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
     195           5 :                                                                            thisChiller.Name,
     196             :                                                                            DataLoopNode::NodeFluidType::Water,
     197             :                                                                            DataLoopNode::ConnectionType::Inlet,
     198             :                                                                            NodeInputManager::CompFluidStream::Primary,
     199             :                                                                            DataLoopNode::ObjectIsNotParent);
     200           5 :         thisChiller.EvapOutletNodeNum = NodeInputManager::GetOnlySingleNode(state,
     201             :                                                                             evap_outlet_node_name,
     202             :                                                                             ErrorsFound,
     203             :                                                                             DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
     204           5 :                                                                             thisChiller.Name,
     205             :                                                                             DataLoopNode::NodeFluidType::Water,
     206             :                                                                             DataLoopNode::ConnectionType::Outlet,
     207             :                                                                             NodeInputManager::CompFluidStream::Primary,
     208             :                                                                             DataLoopNode::ObjectIsNotParent);
     209          10 :         BranchNodeConnections::TestCompSet(
     210           5 :             state, state.dataIPShortCut->cCurrentModuleObject, thisChiller.Name, evap_inlet_node_name, evap_outlet_node_name, "Chilled Water Nodes");
     211             : 
     212           5 :         thisChiller.CondenserType = DataPlant::CondenserType::WaterCooled;
     213             : 
     214          10 :         std::string const cond_inlet_node_name = ip->getAlphaFieldValue(fields, objectSchemaProps, "condenser_inlet_node_name");
     215          10 :         std::string const cond_outlet_node_name = ip->getAlphaFieldValue(fields, objectSchemaProps, "condenser_outlet_node_name");
     216           5 :         if (cond_inlet_node_name.empty() || cond_outlet_node_name.empty()) {
     217           0 :             ShowSevereError(state, format("{}{}=\"{}\"", std::string{RoutineName}, state.dataIPShortCut->cCurrentModuleObject, thisChiller.Name));
     218           0 :             ShowContinueError(state, "Condenser Inlet or Outlet Node Name is blank.");
     219           0 :             ErrorsFound = true;
     220             :         }
     221           5 :         thisChiller.CondInletNodeNum = NodeInputManager::GetOnlySingleNode(state,
     222             :                                                                            cond_inlet_node_name,
     223             :                                                                            ErrorsFound,
     224             :                                                                            DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
     225           5 :                                                                            thisChiller.Name,
     226             :                                                                            DataLoopNode::NodeFluidType::Water,
     227             :                                                                            DataLoopNode::ConnectionType::Inlet,
     228             :                                                                            NodeInputManager::CompFluidStream::Secondary,
     229             :                                                                            DataLoopNode::ObjectIsNotParent);
     230             : 
     231           5 :         thisChiller.CondOutletNodeNum = NodeInputManager::GetOnlySingleNode(state,
     232             :                                                                             cond_outlet_node_name,
     233             :                                                                             ErrorsFound,
     234             :                                                                             DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
     235           5 :                                                                             thisChiller.Name,
     236             :                                                                             DataLoopNode::NodeFluidType::Water,
     237             :                                                                             DataLoopNode::ConnectionType::Outlet,
     238             :                                                                             NodeInputManager::CompFluidStream::Secondary,
     239             :                                                                             DataLoopNode::ObjectIsNotParent);
     240             : 
     241          10 :         BranchNodeConnections::TestCompSet(state,
     242           5 :                                            state.dataIPShortCut->cCurrentModuleObject,
     243             :                                            thisChiller.Name,
     244             :                                            cond_inlet_node_name,
     245             :                                            cond_outlet_node_name,
     246             :                                            "Condenser Water Nodes");
     247             : 
     248           5 :         thisChiller.FlowMode = static_cast<DataPlant::FlowMode>(
     249           5 :             getEnumValue(DataPlant::FlowModeNamesUC, ip->getAlphaFieldValue(fields, objectSchemaProps, "chiller_flow_mode")));
     250             : 
     251           5 :         if (thisChiller.FlowMode == DataPlant::FlowMode::Invalid) {
     252           0 :             ShowSevereError(state, format("{}{}=\"{}\"", std::string{RoutineName}, state.dataIPShortCut->cCurrentModuleObject, thisObjectName));
     253           0 :             ShowContinueError(state, format("Invalid Chiller Flow Mode = {}", fields.at("chiller_flow_mode").get<std::string>()));
     254           0 :             ShowContinueError(state, "Available choices are ConstantFlow, NotModulated, or LeavingSetpointModulated");
     255           0 :             ShowContinueError(state, "Flow mode NotModulated is assumed and the simulation continues.");
     256           0 :             thisChiller.FlowMode = DataPlant::FlowMode::NotModulated;
     257             :         };
     258             : 
     259           5 :         thisChiller.SizFac = fields.at("sizing_factor").get<Real64>();
     260           5 :         if (thisChiller.SizFac <= 0.0) {
     261           0 :             thisChiller.SizFac = 1.0;
     262             :         }
     263             : 
     264             :         {
     265           5 :             auto &tmpFlowRate = fields.at("chilled_water_maximum_requested_flow_rate");
     266           5 :             if (tmpFlowRate == "Autosize") {
     267           0 :                 thisChiller.EvapVolFlowRate = DataSizing::AutoSize;
     268           0 :                 thisChiller.EvapVolFlowRateWasAutoSized = true;
     269             :             } else {
     270           5 :                 thisChiller.EvapVolFlowRate = tmpFlowRate.get<Real64>();
     271             :             }
     272             :         }
     273             :         {
     274           5 :             auto &tmpFlowRate = fields.at("condenser_maximum_requested_flow_rate");
     275           5 :             if (tmpFlowRate == "Autosize") {
     276           0 :                 thisChiller.CondVolFlowRate = DataSizing::AutoSize;
     277           0 :                 thisChiller.CondVolFlowRateWasAutoSized = true;
     278             :             } else {
     279           5 :                 thisChiller.CondVolFlowRate = tmpFlowRate.get<Real64>();
     280             :             }
     281             :         }
     282             : 
     283           5 :         thisChiller.AmbientTempType = static_cast<AmbientTempIndicator>(
     284           5 :             getEnumValue(AmbientTempNamesUC, Util::makeUPPER(ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_indicator"))));
     285           5 :         switch (thisChiller.AmbientTempType) {
     286           0 :         case AmbientTempIndicator::Schedule: {
     287           0 :             std::string const ambient_temp_schedule = ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_schedule");
     288           0 :             thisChiller.AmbientTempSchedule = ScheduleManager::GetScheduleIndex(state, ambient_temp_schedule);
     289           0 :             if (thisChiller.AmbientTempSchedule == 0) {
     290           0 :                 ShowSevereError(state,
     291           0 :                                 format("{} = {}:  Ambient Temperature Schedule not found = {}",
     292           0 :                                        state.dataIPShortCut->cCurrentModuleObject,
     293             :                                        thisObjectName,
     294             :                                        ambient_temp_schedule));
     295           0 :                 ErrorsFound = true;
     296             :             }
     297             : 
     298           0 :             break;
     299           0 :         }
     300           5 :         case AmbientTempIndicator::TempZone: {
     301          10 :             std::string const ambient_temp_zone_name = ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_zone_name");
     302           5 :             thisChiller.AmbientTempZone = Util::FindItemInList(ambient_temp_zone_name, state.dataHeatBal->Zone);
     303           5 :             if (thisChiller.AmbientTempZone == 0) {
     304           0 :                 ShowSevereError(state,
     305           0 :                                 format("{} = {}:  Ambient Temperature Zone not found = {}",
     306           0 :                                        state.dataIPShortCut->cCurrentModuleObject,
     307             :                                        thisObjectName,
     308             :                                        ambient_temp_zone_name));
     309           0 :                 ErrorsFound = true;
     310             :             } else {
     311           5 :                 SetupZoneInternalGain(state,
     312             :                                       thisChiller.AmbientTempZone,
     313             :                                       thisChiller.Name,
     314             :                                       DataHeatBalance::IntGainType::ElectricEquipment,
     315             :                                       &thisChiller.AmbientZoneGain);
     316             :             }
     317           5 :             break;
     318           5 :         }
     319           0 :         case AmbientTempIndicator::OutsideAir: {
     320             :             std::string const ambient_temp_outdoor_node =
     321           0 :                 ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_outdoor_air_node_name");
     322           0 :             thisChiller.AmbientTempOutsideAirNode = NodeInputManager::GetOnlySingleNode(state,
     323             :                                                                                         ambient_temp_outdoor_node,
     324             :                                                                                         ErrorsFound,
     325             :                                                                                         DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
     326           0 :                                                                                         thisChiller.Name,
     327             :                                                                                         DataLoopNode::NodeFluidType::Air,
     328             :                                                                                         DataLoopNode::ConnectionType::OutsideAirReference,
     329             :                                                                                         NodeInputManager::CompFluidStream::Primary,
     330             :                                                                                         DataLoopNode::ObjectIsNotParent);
     331           0 :             if (fields.count("ambient_temperature_outdoor_air_node_name")) {
     332           0 :                 if (!OutAirNodeManager::CheckOutAirNodeNumber(state, thisChiller.AmbientTempOutsideAirNode)) {
     333           0 :                     ShowSevereError(state,
     334           0 :                                     format("{} = {}: Outdoor Air Node not on OutdoorAir:NodeList or OutdoorAir:Node",
     335           0 :                                            state.dataIPShortCut->cCurrentModuleObject,
     336             :                                            thisObjectName));
     337           0 :                     ShowContinueError(state, format("...Referenced Node Name={}", ambient_temp_outdoor_node));
     338           0 :                     ErrorsFound = true;
     339             :                 }
     340             :             } else {
     341           0 :                 ShowSevereError(state, format("{} = {}", state.dataIPShortCut->cCurrentModuleObject, ambient_temp_outdoor_node));
     342           0 :                 ShowContinueError(state, "An Ambient Outdoor Air Node name must be used when the Ambient Temperature Indicator is Outdoors.");
     343           0 :                 ErrorsFound = true;
     344             :             }
     345             : 
     346           0 :             break;
     347           0 :         }
     348           0 :         default: {
     349           0 :             ShowSevereError(state,
     350           0 :                             format("{} = {}:  Invalid Ambient Temperature Indicator entered={}",
     351           0 :                                    state.dataIPShortCut->cCurrentModuleObject,
     352             :                                    thisObjectName,
     353           0 :                                    ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_indicator")));
     354           0 :             ShowContinueError(state, " Valid entries are SCHEDULE, ZONE, and OUTDOORS.");
     355           0 :             ErrorsFound = true;
     356           0 :             break;
     357             :         }
     358             :         }
     359             :         // end Ambient temperature
     360          15 :         std::string const oil_cooler_inlet_node = ip->getAlphaFieldValue(fields, objectSchemaProps, "oil_cooler_inlet_node_name");
     361          15 :         std::string const oil_cooler_outlet_node = ip->getAlphaFieldValue(fields, objectSchemaProps, "oil_cooler_outlet_node_name");
     362           5 :         if (!oil_cooler_inlet_node.empty() && !oil_cooler_outlet_node.empty()) {
     363           2 :             thisChiller.OilCoolerInletNode = NodeInputManager::GetOnlySingleNode(state,
     364             :                                                                                  oil_cooler_inlet_node,
     365             :                                                                                  ErrorsFound,
     366             :                                                                                  DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
     367           2 :                                                                                  thisChiller.Name,
     368             :                                                                                  DataLoopNode::NodeFluidType::Water,
     369             :                                                                                  DataLoopNode::ConnectionType::Inlet,
     370             :                                                                                  NodeInputManager::CompFluidStream::Tertiary,
     371             :                                                                                  DataLoopNode::ObjectIsNotParent);
     372           2 :             thisChiller.OilCoolerOutletNode = NodeInputManager::GetOnlySingleNode(state,
     373             :                                                                                   oil_cooler_outlet_node,
     374             :                                                                                   ErrorsFound,
     375             :                                                                                   DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
     376           2 :                                                                                   thisChiller.Name,
     377             :                                                                                   DataLoopNode::NodeFluidType::Water,
     378             :                                                                                   DataLoopNode::ConnectionType::Outlet,
     379             :                                                                                   NodeInputManager::CompFluidStream::Tertiary,
     380             :                                                                                   DataLoopNode::ObjectIsNotParent);
     381           4 :             BranchNodeConnections::TestCompSet(state,
     382           2 :                                                state.dataIPShortCut->cCurrentModuleObject,
     383             :                                                thisChiller.Name,
     384             :                                                oil_cooler_inlet_node,
     385             :                                                oil_cooler_outlet_node,
     386             :                                                "Oil Cooler Water Nodes");
     387             :         }
     388          15 :         std::string const aux_heat_inlet_node = ip->getAlphaFieldValue(fields, objectSchemaProps, "auxiliary_inlet_node_name");
     389          10 :         std::string const aux_heat_outlet_node = ip->getAlphaFieldValue(fields, objectSchemaProps, "auxiliary_outlet_node_name");
     390           5 :         if (!aux_heat_inlet_node.empty() && !aux_heat_outlet_node.empty()) {
     391             : 
     392           2 :             thisChiller.AuxiliaryHeatInletNode = NodeInputManager::GetOnlySingleNode(state,
     393             :                                                                                      aux_heat_inlet_node,
     394             :                                                                                      ErrorsFound,
     395             :                                                                                      DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
     396           2 :                                                                                      thisChiller.Name,
     397             :                                                                                      DataLoopNode::NodeFluidType::Water,
     398             :                                                                                      DataLoopNode::ConnectionType::Inlet,
     399             :                                                                                      NodeInputManager::CompFluidStream::Quaternary,
     400             :                                                                                      DataLoopNode::ObjectIsNotParent);
     401           2 :             thisChiller.AuxiliaryHeatOutletNode = NodeInputManager::GetOnlySingleNode(state,
     402             :                                                                                       aux_heat_outlet_node,
     403             :                                                                                       ErrorsFound,
     404             :                                                                                       DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
     405           2 :                                                                                       thisChiller.Name,
     406             :                                                                                       DataLoopNode::NodeFluidType::Water,
     407             :                                                                                       DataLoopNode::ConnectionType::Outlet,
     408             :                                                                                       NodeInputManager::CompFluidStream::Quaternary,
     409             :                                                                                       DataLoopNode::ObjectIsNotParent);
     410           4 :             BranchNodeConnections::TestCompSet(state,
     411           2 :                                                state.dataIPShortCut->cCurrentModuleObject,
     412             :                                                thisChiller.Name,
     413             :                                                aux_heat_inlet_node,
     414             :                                                aux_heat_outlet_node,
     415             :                                                "Auxiliary Water Nodes");
     416             :         }
     417             : 
     418             :         // TODO: When implemented, add ...WasAutoSized variables
     419           5 :         if (fields.count("oil_cooler_design_flow_rate")) {
     420           2 :             thisChiller.OilCoolerVolFlowRate = fields.at("oil_cooler_design_flow_rate").get<Real64>();
     421             :         }
     422           5 :         if (fields.count("auxiliary_equipment_design_flow_rate")) {
     423           0 :             thisChiller.AuxiliaryVolFlowRate = fields.at("auxiliary_equipment_design_flow_rate").get<Real64>();
     424             :         }
     425             : 
     426           5 :         if (fields.count("end_use_subcategory")) {
     427           0 :             thisChiller.EndUseSubcategory = ip->getAlphaFieldValue(fields, objectSchemaProps, "end_use_subcategory");
     428             :         } else {
     429           5 :             thisChiller.EndUseSubcategory = "General";
     430             :         }
     431             :         // Set reference conditions
     432           5 :         thisChiller.TempRefCondIn = 29.44;
     433           5 :         thisChiller.TempRefEvapOut = 6.67;
     434           8 :     }
     435             : 
     436           3 :     if (ErrorsFound) {
     437           0 :         ShowFatalError(state, format("Errors found in processing input for {}", state.dataIPShortCut->cCurrentModuleObject));
     438             :     }
     439           3 : }
     440             : 
     441          14 : ASHRAE205ChillerSpecs *ASHRAE205ChillerSpecs::factory(EnergyPlusData &state, std::string const &objectName)
     442             : {
     443          14 :     if (state.dataChillerElectricASHRAE205->getInputFlag) {
     444           3 :         getChillerASHRAE205Input(state);
     445           3 :         state.dataChillerElectricASHRAE205->getInputFlag = false;
     446             :     }
     447          14 :     auto thisObj = std::find_if(state.dataChillerElectricASHRAE205->Electric205Chiller.begin(),
     448          14 :                                 state.dataChillerElectricASHRAE205->Electric205Chiller.end(),
     449          20 :                                 [&objectName](const ASHRAE205ChillerSpecs &myObj) { return myObj.Name == objectName; });
     450          14 :     if (thisObj != state.dataChillerElectricASHRAE205->Electric205Chiller.end()) return thisObj;
     451             :     // If we didn't find it, fatal
     452             :     ShowFatalError(state, format("ASHRAE205ChillerSpecs::factory: Error getting inputs for object named: {}", objectName)); // LCOV_EXCL_LINE
     453             :     return nullptr;                                                                                                         // LCOV_EXCL_LINE
     454             : }
     455             : 
     456           5 : void ASHRAE205ChillerSpecs::oneTimeInit_new(EnergyPlusData &state)
     457             : {
     458             :     // This function is called from GetPlantInput
     459             :     // Locate the chillers on the plant loops for later usage
     460           5 :     bool errFlag{false};
     461          15 :     PlantUtilities::ScanPlantLoopsForObject(
     462          10 :         state, this->Name, DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205, this->CWPlantLoc, errFlag, _, _, _, this->EvapInletNodeNum, _);
     463           5 :     if (this->CondenserType != DataPlant::CondenserType::AirCooled) {
     464          15 :         PlantUtilities::ScanPlantLoopsForObject(state,
     465             :                                                 this->Name,
     466             :                                                 DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
     467           5 :                                                 this->CDPlantLoc,
     468             :                                                 errFlag,
     469             :                                                 _,
     470             :                                                 _,
     471             :                                                 _,
     472           5 :                                                 this->CondInletNodeNum,
     473             :                                                 _);
     474           5 :         PlantUtilities::InterConnectTwoPlantLoopSides(
     475           5 :             state, this->CWPlantLoc, this->CDPlantLoc, DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205, true);
     476             :     }
     477           5 :     if (this->OilCoolerInletNode) {
     478           6 :         PlantUtilities::ScanPlantLoopsForObject(state,
     479             :                                                 this->Name,
     480             :                                                 DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
     481           2 :                                                 this->OCPlantLoc,
     482             :                                                 errFlag,
     483             :                                                 _,
     484             :                                                 _,
     485             :                                                 _,
     486           2 :                                                 this->OilCoolerInletNode,
     487             :                                                 _);
     488             :     }
     489           5 :     if (this->AuxiliaryHeatInletNode) {
     490           6 :         PlantUtilities::ScanPlantLoopsForObject(state,
     491             :                                                 this->Name,
     492             :                                                 DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
     493           2 :                                                 this->AHPlantLoc,
     494             :                                                 errFlag,
     495             :                                                 _,
     496             :                                                 _,
     497             :                                                 _,
     498           2 :                                                 this->AuxiliaryHeatInletNode,
     499             :                                                 _);
     500             :     }
     501             : // If and when heat recovery is implemented, uncomment
     502             : #if 0
     503             :         if (this->HeatRecActive) {
     504             :             PlantUtilities::ScanPlantLoopsForObject(state,
     505             :                                                     this->Name,
     506             :                                                     DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
     507             :                                                     this->HRPlantLoc,
     508             :                                                     errFlag,
     509             :                                                     _,
     510             :                                                     _,
     511             :                                                     _,
     512             :                                                     this->HeatRecInletNodeNum,
     513             :                                                     _);
     514             :             PlantUtilities::InterConnectTwoPlantLoopSides(
     515             :                     state, this->CWPlantLoc, this->HRPlantLoc, DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205, true);
     516             :         }
     517             : 
     518             :         if ((this->CondenserType != DataPlant::CondenserType::AirCooled) && (this->HeatRecActive)) {
     519             :             PlantUtilities::InterConnectTwoPlantLoopSides(
     520             :                     state, this->CDPlantLoc, this->HRPlantLoc, DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205, false);
     521             :         }
     522             : #endif // #if 0
     523             : 
     524           5 :     if (errFlag) {
     525           0 :         ShowFatalError(state, "InitElecASHRAE205Chiller: Program terminated due to previous condition(s).");
     526             :     }
     527             : 
     528           5 :     if (this->FlowMode == DataPlant::FlowMode::Constant) {
     529             :         // reset flow priority
     530           4 :         DataPlant::CompData::getPlantComponent(state, this->CWPlantLoc).FlowPriority = DataPlant::LoopFlowStatus::NeedyIfLoopOn;
     531             :     }
     532             : 
     533           1 :     else if (this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) {
     534             :         // reset flow priority
     535           0 :         DataPlant::CompData::getPlantComponent(state, this->CWPlantLoc).FlowPriority = DataPlant::LoopFlowStatus::NeedyIfLoopOn;
     536             :         // check if setpoint on outlet node
     537           0 :         if ((state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint == DataLoopNode::SensedNodeFlagValue) &&
     538           0 :             (state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi == DataLoopNode::SensedNodeFlagValue)) {
     539           0 :             if (!state.dataGlobal->AnyEnergyManagementSystemInModel) {
     540           0 :                 if (!this->ModulatedFlowErrDone) {
     541           0 :                     ShowWarningError(state, format("Missing temperature setpoint for LeavingSetpointModulated mode chiller named {}", this->Name));
     542           0 :                     ShowContinueError(
     543             :                         state, "  A temperature setpoint is needed at the outlet node of a chiller in variable flow mode, use a SetpointManager");
     544           0 :                     ShowContinueError(state, "  The overall loop setpoint will be assumed for chiller. The simulation continues ... ");
     545           0 :                     this->ModulatedFlowErrDone = true;
     546             :                 }
     547             :             } else {
     548             :                 // need call to EMS to check node
     549           0 :                 bool fatalError = false; // but not really fatal yet, but should be.
     550           0 :                 EMSManager::CheckIfNodeSetPointManagedByEMS(state, this->EvapOutletNodeNum, HVAC::CtrlVarType::Temp, fatalError);
     551           0 :                 state.dataLoopNodes->NodeSetpointCheck(this->EvapOutletNodeNum).needsSetpointChecking = false;
     552           0 :                 if (fatalError) {
     553           0 :                     if (!this->ModulatedFlowErrDone) {
     554           0 :                         ShowWarningError(state,
     555           0 :                                          format("Missing temperature setpoint for LeavingSetpointModulated mode chiller named {}", this->Name));
     556           0 :                         ShowContinueError(state,
     557             :                                           "  A temperature setpoint is needed at the outlet node of a chiller evaporator in variable flow mode");
     558           0 :                         ShowContinueError(state, "  use a Setpoint Manager to establish a setpoint at the chiller evaporator outlet node ");
     559           0 :                         ShowContinueError(state, "  or use an EMS actuator to establish a setpoint at the outlet node ");
     560           0 :                         ShowContinueError(state, "  The overall loop setpoint will be assumed for chiller. The simulation continues ... ");
     561           0 :                         this->ModulatedFlowErrDone = true;
     562             :                     }
     563             :                 }
     564             :             }
     565           0 :             this->ModulatedFlowSetToLoop = true;
     566           0 :             state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint =
     567           0 :                 state.dataLoopNodes->Node(state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).TempSetPointNodeNum).TempSetPoint;
     568           0 :             state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi =
     569           0 :                 state.dataLoopNodes->Node(state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).TempSetPointNodeNum).TempSetPointHi;
     570             :         }
     571             :     }
     572             : 
     573           5 :     this->setOutputVariables(state);
     574           5 : }
     575             : 
     576      251987 : void ASHRAE205ChillerSpecs::initialize(EnergyPlusData &state, bool const RunFlag, Real64 const MyLoad)
     577             : {
     578             :     static constexpr std::string_view RoutineName("ASHRAE205ChillerSpecs::initialize");
     579             : 
     580      251987 :     switch (this->AmbientTempType) {
     581           0 :     case AmbientTempIndicator::Schedule: {
     582           0 :         this->AmbientTemp = ScheduleManager::GetCurrentScheduleValue(state, this->AmbientTempSchedule);
     583           0 :         break;
     584             :     }
     585      251987 :     case AmbientTempIndicator::TempZone: {
     586      251987 :         this->AmbientTemp = state.dataZoneTempPredictorCorrector->zoneHeatBalance(this->AmbientTempZone).MAT;
     587      251987 :         break;
     588             :     }
     589           0 :     case AmbientTempIndicator::OutsideAir: {
     590           0 :         this->AmbientTemp = state.dataLoopNodes->Node(this->AmbientTempOutsideAirNode).Temp;
     591           0 :         break;
     592             :     }
     593           0 :     default:
     594           0 :         break;
     595             :     }
     596             : 
     597      251987 :     this->EquipFlowCtrl = DataPlant::CompData::getPlantComponent(state, this->CWPlantLoc).FlowCtrl;
     598             : 
     599      251987 :     if (this->MyEnvrnFlag && state.dataGlobal->BeginEnvrnFlag && (state.dataPlnt->PlantFirstSizesOkayToFinalize)) {
     600         955 :         Real64 rho = FluidProperties::GetDensityGlycol(state,
     601         955 :                                                        state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidName,
     602             :                                                        Constant::CWInitConvTemp,
     603         955 :                                                        state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidIndex,
     604             :                                                        RoutineName);
     605             : 
     606         955 :         this->EvapMassFlowRateMax = rho * this->EvapVolFlowRate;
     607         955 :         PlantUtilities::InitComponentNodes(state, 0.0, this->EvapMassFlowRateMax, this->EvapInletNodeNum, this->EvapOutletNodeNum);
     608             : 
     609         955 :         if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
     610         955 :             rho = FluidProperties::GetDensityGlycol(state,
     611         955 :                                                     state.dataPlnt->PlantLoop(this->CDPlantLoc.loopNum).FluidName,
     612             :                                                     this->TempRefCondIn,
     613         955 :                                                     state.dataPlnt->PlantLoop(this->CDPlantLoc.loopNum).FluidIndex,
     614             :                                                     RoutineName);
     615         955 :             this->CondMassFlowRateMax = rho * this->CondVolFlowRate;
     616         955 :             PlantUtilities::InitComponentNodes(state, 0.0, this->CondMassFlowRateMax, this->CondInletNodeNum, this->CondOutletNodeNum);
     617         955 :             state.dataLoopNodes->Node(this->CondInletNodeNum).Temp = this->TempRefCondIn;
     618             :         }
     619             :         // Set mass flow rates at Oil Cooler and Aux Equipment nodes
     620         955 :         if (this->OilCoolerInletNode) {
     621         426 :             Real64 rho_oil_cooler = FluidProperties::GetDensityGlycol(state,
     622         426 :                                                                       state.dataPlnt->PlantLoop(this->OCPlantLoc.loopNum).FluidName,
     623             :                                                                       Constant::InitConvTemp,
     624         426 :                                                                       state.dataPlnt->PlantLoop(this->OCPlantLoc.loopNum).FluidIndex,
     625             :                                                                       RoutineName);
     626         426 :             this->OilCoolerMassFlowRate = rho_oil_cooler * this->OilCoolerVolFlowRate;
     627         426 :             PlantUtilities::InitComponentNodes(state, 0.0, this->OilCoolerMassFlowRate, this->OilCoolerInletNode, this->OilCoolerOutletNode);
     628             :         }
     629         955 :         if (this->AuxiliaryHeatInletNode) {
     630         426 :             Real64 rho_aux = FluidProperties::GetDensityGlycol(state,
     631         426 :                                                                state.dataPlnt->PlantLoop(this->AHPlantLoc.loopNum).FluidName,
     632             :                                                                Constant::InitConvTemp,
     633         426 :                                                                state.dataPlnt->PlantLoop(this->AHPlantLoc.loopNum).FluidIndex,
     634             :                                                                RoutineName);
     635         426 :             this->AuxiliaryMassFlowRate = rho_aux * this->AuxiliaryVolFlowRate;
     636         426 :             PlantUtilities::InitComponentNodes(state, 0.0, this->AuxiliaryMassFlowRate, this->AuxiliaryHeatInletNode, this->AuxiliaryHeatOutletNode);
     637             :         }
     638             :     }
     639      251987 :     if (!state.dataGlobal->BeginEnvrnFlag) {
     640      250952 :         this->MyEnvrnFlag = true;
     641             :     }
     642             : 
     643      251987 :     if ((this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) && this->ModulatedFlowSetToLoop) {
     644             :         // see ReformulatedEIR or EIR Chiller for origin of the following
     645           0 :         state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint =
     646           0 :             state.dataLoopNodes->Node(state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).TempSetPointNodeNum).TempSetPoint;
     647           0 :         state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi =
     648           0 :             state.dataLoopNodes->Node(state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).TempSetPointNodeNum).TempSetPointHi;
     649             :     }
     650             : 
     651      251987 :     Real64 mdot = ((std::abs(MyLoad) > 0.0) && RunFlag) ? this->EvapMassFlowRateMax : 0.0;
     652      251987 :     Real64 mdotCond = ((std::abs(MyLoad) > 0.0) && RunFlag) ? this->CondMassFlowRateMax : 0.0;
     653             : 
     654      251987 :     PlantUtilities::SetComponentFlowRate(state, mdot, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
     655             : 
     656      251987 :     if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
     657      251987 :         PlantUtilities::SetComponentFlowRate(state, mdotCond, this->CondInletNodeNum, this->CondOutletNodeNum, this->CDPlantLoc);
     658             :     }
     659             : 
     660             :     // Set component flow rates for Oil Cooler and Aux equipment
     661      251987 :     if (this->OilCoolerInletNode) {
     662      111572 :         PlantUtilities::SetComponentFlowRate(
     663      111572 :             state, this->OilCoolerMassFlowRate, this->OilCoolerInletNode, this->OilCoolerOutletNode, this->OCPlantLoc);
     664             :     }
     665      251987 :     if (this->AuxiliaryHeatInletNode) {
     666      111572 :         PlantUtilities::SetComponentFlowRate(
     667      111572 :             state, this->AuxiliaryMassFlowRate, this->AuxiliaryHeatInletNode, this->AuxiliaryHeatOutletNode, this->AHPlantLoc);
     668             :     }
     669             :     // Recalculate volumetric flow rates from component mass flow rates if necessary
     670             : 
     671             : // Revisit when heat recovery implemented
     672             : #if 0
     673             :       // Initialize heat recovery flow rates at node
     674             :         if (this->HeatRecActive) {
     675             : 
     676             :             // check if inlet limit active and if exceeded.
     677             :             bool HeatRecRunFlag = RunFlag;
     678             :             if (this->HeatRecInletLimitSchedNum > 0) {
     679             :                 Real64 HeatRecHighInletLimit = ScheduleManager::GetCurrentScheduleValue(state, this->HeatRecInletLimitSchedNum);
     680             :                 if (state.dataLoopNodes->Node(this->HeatRecInletNodeNum).Temp > HeatRecHighInletLimit) { // shut down heat recovery
     681             :                     HeatRecRunFlag = false;
     682             :                 } else {
     683             :                     HeatRecRunFlag = RunFlag;
     684             :                 }
     685             :             }
     686             : 
     687             :             mdot = HeatRecRunFlag ? this->DesignHeatRecMassFlowRate : 0.0;
     688             : 
     689             :             PlantUtilities::SetComponentFlowRate(state, mdot, this->HeatRecInletNodeNum, this->HeatRecOutletNodeNum, this->HRPlantLoc);
     690             :         }
     691             : #endif // if 0
     692      251987 : }
     693             : 
     694          25 : void ASHRAE205ChillerSpecs::size([[maybe_unused]] EnergyPlusData &state)
     695             : {
     696             :     static constexpr std::string_view RoutineName("SizeElectricASHRAE205Chiller");
     697             : 
     698          25 :     bool ErrorsFound = false;
     699          25 :     Real64 tmpNomCap{0.0};
     700          25 :     Real64 tmpEvapVolFlowRate = this->EvapVolFlowRate;
     701          25 :     Real64 tmpCondVolFlowRate = this->CondVolFlowRate;
     702             : 
     703             :     // Size evaporator flow rate
     704             :     // find the appropriate Plant Sizing object
     705          25 :     int PltSizNum = state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).PlantSizNum;
     706             : 
     707          25 :     if (PltSizNum > 0) {
     708          20 :         if (state.dataSize->PlantSizData(PltSizNum).DesVolFlowRate >= HVAC::SmallWaterVolFlow) {
     709          12 :             tmpEvapVolFlowRate = state.dataSize->PlantSizData(PltSizNum).DesVolFlowRate * this->SizFac;
     710             :         } else {
     711           8 :             if (this->EvapVolFlowRateWasAutoSized) tmpEvapVolFlowRate = 0.0;
     712             :         }
     713          20 :         if (state.dataPlnt->PlantFirstSizesOkayToFinalize) {
     714           4 :             if (this->EvapVolFlowRateWasAutoSized) {
     715           0 :                 this->EvapVolFlowRate = tmpEvapVolFlowRate;
     716           0 :                 if (state.dataPlnt->PlantFinalSizesOkayToReport) {
     717           0 :                     BaseSizer::reportSizerOutput(
     718             :                         state, this->ObjectType, this->Name, "Design Size Chilled Water Maximum Requested Flow Rate [m3/s]", tmpEvapVolFlowRate);
     719             :                 }
     720           0 :                 if (state.dataPlnt->PlantFirstSizesOkayToReport) {
     721           0 :                     BaseSizer::reportSizerOutput(state,
     722             :                                                  this->ObjectType,
     723             :                                                  this->Name,
     724             :                                                  "Initial Design Size Chilled Water Maximum Requested Flow Rate [m3/s]",
     725             :                                                  tmpEvapVolFlowRate);
     726             :                 }
     727             :             } else { // Hard-size with sizing data
     728           4 :                 if (this->EvapVolFlowRate > 0.0 && tmpEvapVolFlowRate > 0.0) {
     729           4 :                     Real64 EvapVolFlowRateUser = this->EvapVolFlowRate;
     730           4 :                     if (state.dataPlnt->PlantFinalSizesOkayToReport) {
     731           4 :                         BaseSizer::reportSizerOutput(state,
     732             :                                                      this->ObjectType,
     733             :                                                      this->Name,
     734             :                                                      "Design Size Chilled Water Maximum Requested Flow Rate [m3/s]",
     735             :                                                      tmpEvapVolFlowRate,
     736             :                                                      "User-Specified Chilled Water Maximum Requested Flow Rate [m3/s]",
     737             :                                                      EvapVolFlowRateUser);
     738           4 :                         if (state.dataGlobal->DisplayExtraWarnings) {
     739           0 :                             if ((std::abs(tmpEvapVolFlowRate - EvapVolFlowRateUser) / EvapVolFlowRateUser) >
     740           0 :                                 state.dataSize->AutoVsHardSizingThreshold) {
     741           0 :                                 ShowMessage(state, format("{}: Potential issue with equipment sizing for {}", RoutineName, this->Name));
     742           0 :                                 ShowContinueError(
     743           0 :                                     state, format("User-Specified Chilled Water Maximum Requested Flow Rate of {:.5R} [m3/s]", EvapVolFlowRateUser));
     744           0 :                                 ShowContinueError(state,
     745           0 :                                                   format("differs from Design Size Chilled Water Maximum Requested Flow Rate of {:.5R} [m3/s]",
     746             :                                                          tmpEvapVolFlowRate));
     747           0 :                                 ShowContinueError(state, "This may, or may not, indicate mismatched component sizes.");
     748           0 :                                 ShowContinueError(state, "Verify that the value entered is intended and is consistent with other components.");
     749             :                             }
     750             :                         }
     751             :                     }
     752           4 :                     tmpEvapVolFlowRate = EvapVolFlowRateUser;
     753             :                 }
     754             :             }
     755             :         }
     756             :     } else {
     757           5 :         if (this->EvapVolFlowRateWasAutoSized && state.dataPlnt->PlantFirstSizesOkayToFinalize) {
     758           0 :             ShowSevereError(state, "Autosizing of Electric Chiller evap flow rate requires a loop Sizing:Plant object");
     759           0 :             ShowContinueError(state, format("Occurs in Electric Chiller object={}", this->Name));
     760           0 :             ErrorsFound = true;
     761             :         }
     762           5 :         if (!this->EvapVolFlowRateWasAutoSized && state.dataPlnt->PlantFinalSizesOkayToReport && (this->EvapVolFlowRate > 0.0)) {
     763           1 :             BaseSizer::reportSizerOutput(
     764             :                 state, this->ObjectType, this->Name, "User-Specified Chilled Water Maximum Requested Flow Rate [m3/s]", this->EvapVolFlowRate);
     765             :         }
     766             :     }
     767             : 
     768          25 :     PlantUtilities::RegisterPlantCompDesignFlow(state, this->EvapInletNodeNum, tmpEvapVolFlowRate);
     769             : 
     770             :     // Size condenser flow rate
     771          25 :     int PltSizCondNum = state.dataPlnt->PlantLoop(this->CDPlantLoc.loopNum).PlantSizNum; // Change for air-cooled when it's supported
     772          25 :     if (PltSizCondNum > 0 && PltSizNum > 0) {
     773          20 :         if (state.dataSize->PlantSizData(PltSizNum).DesVolFlowRate >= HVAC::SmallWaterVolFlow && tmpNomCap > 0.0) {
     774             : 
     775           0 :             Real64 rho = FluidProperties::GetDensityGlycol(state,
     776           0 :                                                            state.dataPlnt->PlantLoop(this->CDPlantLoc.loopNum).FluidName,
     777             :                                                            Constant::CWInitConvTemp,
     778           0 :                                                            state.dataPlnt->PlantLoop(this->CDPlantLoc.loopNum).FluidIndex,
     779             :                                                            RoutineName);
     780           0 :             Real64 Cp = FluidProperties::GetSpecificHeatGlycol(state,
     781           0 :                                                                state.dataPlnt->PlantLoop(this->CDPlantLoc.loopNum).FluidName,
     782             :                                                                this->TempRefCondIn,
     783           0 :                                                                state.dataPlnt->PlantLoop(this->CDPlantLoc.loopNum).FluidIndex,
     784             :                                                                RoutineName);
     785           0 :             tmpCondVolFlowRate = tmpNomCap * (1.0 + (1.0 / this->RefCOP) * this->CompPowerToCondenserFrac) /
     786           0 :                                  (state.dataSize->PlantSizData(PltSizCondNum).DeltaT * Cp * rho);
     787             : 
     788             :         } else {
     789          20 :             if (this->CondVolFlowRateWasAutoSized) tmpCondVolFlowRate = 0.0;
     790             :         }
     791          20 :         if (state.dataPlnt->PlantFirstSizesOkayToFinalize) {
     792           4 :             if (this->CondVolFlowRateWasAutoSized) {
     793           0 :                 this->CondVolFlowRate = tmpCondVolFlowRate;
     794           0 :                 if (state.dataPlnt->PlantFinalSizesOkayToReport) {
     795           0 :                     BaseSizer::reportSizerOutput(
     796             :                         state, this->ObjectType, this->Name, "Design Size Condenser Maximum Requested Flow Rate [m3/s]", tmpCondVolFlowRate);
     797             :                 }
     798           0 :                 if (state.dataPlnt->PlantFirstSizesOkayToReport) {
     799           0 :                     BaseSizer::reportSizerOutput(
     800             :                         state, this->ObjectType, this->Name, "Initial Design Size Condenser Maximum Requested Flow Rate [m3/s]", tmpCondVolFlowRate);
     801             :                 }
     802             :             } else {
     803           4 :                 if (this->CondVolFlowRate > 0.0 && tmpCondVolFlowRate > 0.0) {
     804           4 :                     Real64 CondVolFlowRateUser = this->CondVolFlowRate;
     805           4 :                     if (state.dataPlnt->PlantFinalSizesOkayToReport) {
     806           4 :                         BaseSizer::reportSizerOutput(state,
     807             :                                                      this->ObjectType,
     808             :                                                      this->Name,
     809             :                                                      "Design Size Condenser Maximum Requested Flow Rate [m3/s]",
     810             :                                                      tmpCondVolFlowRate,
     811             :                                                      "User-Specified Condenser Maximum Requested Flow Rate [m3/s]",
     812             :                                                      CondVolFlowRateUser);
     813           4 :                         if (state.dataGlobal->DisplayExtraWarnings) {
     814           0 :                             if ((std::abs(tmpCondVolFlowRate - CondVolFlowRateUser) / CondVolFlowRateUser) >
     815           0 :                                 state.dataSize->AutoVsHardSizingThreshold) {
     816           0 :                                 ShowMessage(state, format("{}: Potential issue with equipment sizing for {}", RoutineName, this->Name));
     817           0 :                                 ShowContinueError(
     818           0 :                                     state, format("User-Specified Condenser Maximum Requested Flow Rate of {:.5R} [m3/s]", CondVolFlowRateUser));
     819           0 :                                 ShowContinueError(
     820             :                                     state,
     821           0 :                                     format("differs from Design Size Condenser Maximum Requested Flow Rate of {:.5R} [m3/s]", tmpCondVolFlowRate));
     822           0 :                                 ShowContinueError(state, "This may, or may not, indicate mismatched component sizes.");
     823           0 :                                 ShowContinueError(state, "Verify that the value entered is intended and is consistent with other components.");
     824             :                             }
     825             :                         }
     826             :                     }
     827           4 :                     tmpCondVolFlowRate = CondVolFlowRateUser;
     828             :                 }
     829             :             }
     830             :         }
     831          20 :     } else {
     832           5 :         if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
     833             : 
     834           5 :             if (this->CondVolFlowRateWasAutoSized && state.dataPlnt->PlantFirstSizesOkayToFinalize) {
     835           0 :                 ShowSevereError(state, "Autosizing of Electric ASHRAE 205 Chiller condenser fluid flow rate requires a condenser");
     836           0 :                 ShowContinueError(state, "loop Sizing:Plant object");
     837           0 :                 ShowContinueError(state, format("Occurs in Electric ASHRAE 205 Chiller object={}", this->Name));
     838           0 :                 ErrorsFound = true;
     839             :             }
     840           5 :             if (!this->CondVolFlowRateWasAutoSized && state.dataPlnt->PlantFinalSizesOkayToReport && (this->CondVolFlowRate > 0.0)) {
     841           1 :                 BaseSizer::reportSizerOutput(
     842             :                     state, this->ObjectType, this->Name, "User-Specified Condenser Maximum Requested Flow Rate [m3/s]", this->CondVolFlowRate);
     843             :             }
     844             : 
     845             :         } else {
     846             : 
     847             :             // Auto size condenser air flow to Total Capacity * 0.000114 m3/s/w (850 cfm/ton)
     848           0 :             if (state.dataPlnt->PlantFinalSizesOkayToReport) {
     849           0 :                 std::string_view CompType =
     850             :                     DataPlant::PlantEquipTypeNames[static_cast<int>(DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205)];
     851           0 :                 state.dataSize->DataConstantUsedForSizing = this->RefCap;
     852           0 :                 state.dataSize->DataFractionUsedForSizing = 0.000114;
     853           0 :                 Real64 TempSize = this->CondVolFlowRate;
     854           0 :                 bool bPRINT = true; // TRUE if sizing is reported to output (eio)
     855           0 :                 AutoCalculateSizer sizerCondAirFlow;
     856           0 :                 std::string stringOverride = "Condenser Maximum Requested Flow Rate  [m3/s]";
     857           0 :                 if (state.dataGlobal->isEpJSON) stringOverride = "condenser_maximum_requested_flow_rate [m3/s]";
     858           0 :                 sizerCondAirFlow.overrideSizingString(stringOverride);
     859           0 :                 sizerCondAirFlow.initializeWithinEP(state, CompType, this->Name, bPRINT, RoutineName);
     860           0 :                 this->CondVolFlowRate = sizerCondAirFlow.size(state, TempSize, ErrorsFound);
     861           0 :             }
     862             :         }
     863             :     }
     864             : 
     865             :     // save the reference condenser water volumetric flow rate for use by the condenser water loop sizing algorithms
     866          25 :     PlantUtilities::RegisterPlantCompDesignFlow(state, this->CondInletNodeNum, tmpCondVolFlowRate);
     867             : 
     868             :     // Calculate design evaporator capacity (eventually add autosize here too)
     869             : 
     870             :     // TODO: Determine actual rated flow rates instead of design flow rates
     871          25 :     this->RefCap = this->Representation->performance.performance_map_cooling
     872          50 :                        .calculate_performance(this->EvapVolFlowRate,
     873          25 :                                               this->TempRefEvapOut + Constant::Kelvin,
     874             :                                               this->CondVolFlowRate,
     875          25 :                                               this->TempRefCondIn + Constant::Kelvin,
     876          25 :                                               this->MaxSequenceNumber,
     877             :                                               this->InterpolationType)
     878          25 :                        .net_evaporator_capacity;
     879             : 
     880          25 :     if (PltSizNum > 0) {
     881          20 :         if (state.dataSize->PlantSizData(PltSizNum).DesVolFlowRate >= HVAC::SmallWaterVolFlow) {
     882          12 :             Real64 Cp = FluidProperties::GetSpecificHeatGlycol(state,
     883          12 :                                                                state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidName,
     884             :                                                                Constant::CWInitConvTemp,
     885          12 :                                                                state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidIndex,
     886             :                                                                RoutineName);
     887             : 
     888          12 :             Real64 rho = FluidProperties::GetDensityGlycol(state,
     889          12 :                                                            state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidName,
     890             :                                                            Constant::CWInitConvTemp,
     891          12 :                                                            state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidIndex,
     892             :                                                            RoutineName);
     893          12 :             tmpNomCap = Cp * rho * state.dataSize->PlantSizData(PltSizNum).DeltaT * tmpEvapVolFlowRate;
     894             :         } else {
     895           8 :             tmpNomCap = 0.0;
     896             :         }
     897          20 :         if (state.dataPlnt->PlantFirstSizesOkayToFinalize) {
     898           4 :             if (this->RefCapWasAutoSized) {
     899           0 :                 this->RefCap = tmpNomCap;
     900           0 :                 if (state.dataPlnt->PlantFinalSizesOkayToReport) {
     901           0 :                     BaseSizer::reportSizerOutput(state, this->ObjectType, this->Name, "Design Size Rated Capacity [W]", tmpNomCap);
     902             :                 }
     903           0 :                 if (state.dataPlnt->PlantFirstSizesOkayToReport) {
     904           0 :                     BaseSizer::reportSizerOutput(state, this->ObjectType, this->Name, "Initial Design Size Rated Capacity [W]", tmpNomCap);
     905             :                 }
     906             :             } else { // Hard-sized with sizing data
     907           4 :                 if (this->RefCap > 0.0 && tmpNomCap > 0.0) {
     908           4 :                     Real64 RefCapUser = this->RefCap;
     909           4 :                     if (state.dataPlnt->PlantFinalSizesOkayToReport) {
     910           4 :                         BaseSizer::reportSizerOutput(state,
     911             :                                                      this->ObjectType,
     912             :                                                      this->Name,
     913             :                                                      "Design Size Rated Capacity [W]",
     914             :                                                      tmpNomCap,
     915             :                                                      "User-Specified Rated Capacity [W]",
     916             :                                                      RefCapUser);
     917           4 :                         if (state.dataGlobal->DisplayExtraWarnings) {
     918           0 :                             if ((std::abs(tmpNomCap - RefCapUser) / RefCapUser) > state.dataSize->AutoVsHardSizingThreshold) {
     919           0 :                                 ShowMessage(state, format("{}: Potential issue with equipment sizing for {}", RoutineName, this->Name));
     920           0 :                                 ShowContinueError(state, format("User-Specified Rated Capacity of {:.2R} [W]", RefCapUser));
     921           0 :                                 ShowContinueError(state, format("differs from Design Size Rated Capacity of {:.2R} [W]", tmpNomCap));
     922           0 :                                 ShowContinueError(state, "This may, or may not, indicate mismatched component sizes.");
     923           0 :                                 ShowContinueError(state, "Verify that the value entered is intended and is consistent with other components.");
     924             :                             }
     925             :                         }
     926             :                     }
     927           4 :                     tmpNomCap = RefCapUser;
     928             :                 }
     929             :             }
     930             :         }
     931             :     } else {
     932           5 :         if (this->RefCapWasAutoSized && state.dataPlnt->PlantFirstSizesOkayToFinalize) {
     933           0 :             ShowSevereError(state, "Autosizing of Electric Chiller reference capacity requires a loop Sizing:Plant object");
     934           0 :             ShowContinueError(state, format("Occurs in Electric Chiller object={}", this->Name));
     935           0 :             ErrorsFound = true;
     936             :         }
     937           5 :         if (!this->RefCapWasAutoSized && state.dataPlnt->PlantFinalSizesOkayToReport && (this->RefCap > 0.0)) { // Hard-sized with no sizing data
     938           1 :             BaseSizer::reportSizerOutput(state, this->ObjectType, this->Name, "User-Specified Rated Capacity [W]", this->RefCap);
     939             :         }
     940             :     }
     941             : 
     942          25 :     if (this->OilCoolerInletNode) {
     943          10 :         PlantUtilities::RegisterPlantCompDesignFlow(state, this->OilCoolerInletNode, this->OilCoolerVolFlowRate);
     944             :     }
     945             : 
     946          25 :     if (this->AuxiliaryHeatInletNode) {
     947          10 :         PlantUtilities::RegisterPlantCompDesignFlow(state, this->AuxiliaryHeatInletNode, this->AuxiliaryVolFlowRate);
     948             :     }
     949             : 
     950          25 :     if (state.dataPlnt->PlantFinalSizesOkayToReport) {
     951             :         // create predefined report
     952           5 :         OutputReportPredefined::PreDefTableEntry(state, state.dataOutRptPredefined->pdchMechType, this->Name, this->ObjectType);
     953           5 :         OutputReportPredefined::PreDefTableEntry(state, state.dataOutRptPredefined->pdchMechNomEff, this->Name, this->RefCOP);
     954           5 :         OutputReportPredefined::PreDefTableEntry(state, state.dataOutRptPredefined->pdchMechNomCap, this->Name, this->RefCap);
     955             :     }
     956             : 
     957          25 :     if (ErrorsFound) {
     958           0 :         ShowFatalError(state, "Preceding sizing errors cause program termination");
     959             :     }
     960          25 : }
     961             : 
     962           5 : void ASHRAE205ChillerSpecs::setOutputVariables(EnergyPlusData &state)
     963             : {
     964          10 :     SetupOutputVariable(state,
     965             :                         "Chiller Part Load Ratio",
     966             :                         Constant::Units::None,
     967           5 :                         this->ChillerPartLoadRatio,
     968             :                         OutputProcessor::TimeStepType::System,
     969             :                         OutputProcessor::StoreType::Average,
     970           5 :                         this->Name);
     971             : 
     972          10 :     SetupOutputVariable(state,
     973             :                         "Chiller Cycling Ratio",
     974             :                         Constant::Units::None,
     975           5 :                         this->ChillerCyclingRatio,
     976             :                         OutputProcessor::TimeStepType::System,
     977             :                         OutputProcessor::StoreType::Average,
     978           5 :                         this->Name);
     979             : 
     980          10 :     SetupOutputVariable(state,
     981             :                         "Minimum Part Load Ratio",
     982             :                         Constant::Units::None,
     983           5 :                         this->MinPartLoadRat,
     984             :                         OutputProcessor::TimeStepType::System,
     985             :                         OutputProcessor::StoreType::Average,
     986           5 :                         this->Name);
     987             : 
     988          10 :     SetupOutputVariable(state,
     989             :                         "Chiller Electricity Rate",
     990             :                         Constant::Units::W,
     991           5 :                         this->Power,
     992             :                         OutputProcessor::TimeStepType::System,
     993             :                         OutputProcessor::StoreType::Average,
     994           5 :                         this->Name);
     995             : 
     996          10 :     SetupOutputVariable(state,
     997             :                         "Chiller Electricity Energy",
     998             :                         Constant::Units::J,
     999           5 :                         this->Energy,
    1000             :                         OutputProcessor::TimeStepType::System,
    1001             :                         OutputProcessor::StoreType::Sum,
    1002           5 :                         this->Name,
    1003             :                         Constant::eResource::Electricity,
    1004             :                         OutputProcessor::Group::Plant,
    1005             :                         OutputProcessor::EndUseCat::Cooling,
    1006             :                         this->EndUseSubcategory);
    1007             : 
    1008          10 :     SetupOutputVariable(state,
    1009             :                         "Chiller Evaporator Cooling Rate",
    1010             :                         Constant::Units::W,
    1011           5 :                         this->QEvaporator,
    1012             :                         OutputProcessor::TimeStepType::System,
    1013             :                         OutputProcessor::StoreType::Average,
    1014           5 :                         this->Name);
    1015             : 
    1016          10 :     SetupOutputVariable(state,
    1017             :                         "Chiller Evaporator Cooling Energy",
    1018             :                         Constant::Units::J,
    1019           5 :                         this->EvapEnergy,
    1020             :                         OutputProcessor::TimeStepType::System,
    1021             :                         OutputProcessor::StoreType::Sum,
    1022           5 :                         this->Name,
    1023             :                         Constant::eResource::EnergyTransfer,
    1024             :                         OutputProcessor::Group::Plant,
    1025             :                         OutputProcessor::EndUseCat::Chillers);
    1026             : 
    1027          10 :     SetupOutputVariable(state,
    1028             :                         "Chiller Evaporator Inlet Temperature",
    1029             :                         Constant::Units::C,
    1030           5 :                         this->EvapInletTemp,
    1031             :                         OutputProcessor::TimeStepType::System,
    1032             :                         OutputProcessor::StoreType::Average,
    1033           5 :                         this->Name);
    1034             : 
    1035          10 :     SetupOutputVariable(state,
    1036             :                         "Chiller Evaporator Outlet Temperature",
    1037             :                         Constant::Units::C,
    1038           5 :                         this->EvapOutletTemp,
    1039             :                         OutputProcessor::TimeStepType::System,
    1040             :                         OutputProcessor::StoreType::Average,
    1041           5 :                         this->Name);
    1042             : 
    1043          10 :     SetupOutputVariable(state,
    1044             :                         "Chiller Evaporator Mass Flow Rate",
    1045             :                         Constant::Units::kg_s,
    1046           5 :                         this->EvapMassFlowRate,
    1047             :                         OutputProcessor::TimeStepType::System,
    1048             :                         OutputProcessor::StoreType::Average,
    1049           5 :                         this->Name);
    1050             : 
    1051          10 :     SetupOutputVariable(state,
    1052             :                         "Chiller Condenser Heat Transfer Rate",
    1053             :                         Constant::Units::W,
    1054           5 :                         this->QCondenser,
    1055             :                         OutputProcessor::TimeStepType::System,
    1056             :                         OutputProcessor::StoreType::Average,
    1057           5 :                         this->Name);
    1058             : 
    1059          10 :     SetupOutputVariable(state,
    1060             :                         "Chiller Condenser Heat Transfer Energy",
    1061             :                         Constant::Units::J,
    1062           5 :                         this->CondEnergy,
    1063             :                         OutputProcessor::TimeStepType::System,
    1064             :                         OutputProcessor::StoreType::Sum,
    1065           5 :                         this->Name,
    1066             :                         Constant::eResource::EnergyTransfer,
    1067             :                         OutputProcessor::Group::Plant,
    1068             :                         OutputProcessor::EndUseCat::HeatRejection);
    1069             : 
    1070          10 :     SetupOutputVariable(state,
    1071             :                         "Chiller COP",
    1072             :                         Constant::Units::W_W,
    1073           5 :                         this->ActualCOP,
    1074             :                         OutputProcessor::TimeStepType::System,
    1075             :                         OutputProcessor::StoreType::Average,
    1076           5 :                         this->Name);
    1077             : 
    1078          10 :     SetupOutputVariable(state,
    1079             :                         "Chiller Condenser Inlet Temperature",
    1080             :                         Constant::Units::C,
    1081           5 :                         this->CondInletTemp,
    1082             :                         OutputProcessor::TimeStepType::System,
    1083             :                         OutputProcessor::StoreType::Average,
    1084           5 :                         this->Name);
    1085             : 
    1086          10 :     SetupOutputVariable(state,
    1087             :                         "Chiller Condenser Outlet Temperature",
    1088             :                         Constant::Units::C,
    1089           5 :                         this->CondOutletTemp,
    1090             :                         OutputProcessor::TimeStepType::System,
    1091             :                         OutputProcessor::StoreType::Average,
    1092           5 :                         this->Name);
    1093             : 
    1094          10 :     SetupOutputVariable(state,
    1095             :                         "Chiller Condenser Mass Flow Rate",
    1096             :                         Constant::Units::kg_s,
    1097           5 :                         this->CondMassFlowRate,
    1098             :                         OutputProcessor::TimeStepType::System,
    1099             :                         OutputProcessor::StoreType::Average,
    1100           5 :                         this->Name);
    1101             : 
    1102          10 :     SetupOutputVariable(state,
    1103             :                         "Chiller Effective Heat Rejection Temperature",
    1104             :                         Constant::Units::C,
    1105           5 :                         this->ChillerCondAvgTemp,
    1106             :                         OutputProcessor::TimeStepType::System,
    1107             :                         OutputProcessor::StoreType::Average,
    1108           5 :                         this->Name);
    1109             : 
    1110          10 :     SetupOutputVariable(state,
    1111             :                         "Chiller Zone Heat Gain Rate",
    1112             :                         Constant::Units::W,
    1113           5 :                         this->AmbientZoneGain,
    1114             :                         OutputProcessor::TimeStepType::System,
    1115             :                         OutputProcessor::StoreType::Average,
    1116           5 :                         this->Name);
    1117             : 
    1118          10 :     SetupOutputVariable(state,
    1119             :                         "Chiller Zone Heat Gain Energy",
    1120             :                         Constant::Units::J,
    1121           5 :                         this->AmbientZoneGainEnergy,
    1122             :                         OutputProcessor::TimeStepType::System,
    1123             :                         OutputProcessor::StoreType::Sum,
    1124           5 :                         this->Name);
    1125             : 
    1126          10 :     SetupOutputVariable(state,
    1127             :                         "Oil Cooler Heat Transfer Rate",
    1128             :                         Constant::Units::W,
    1129           5 :                         this->QOilCooler,
    1130             :                         OutputProcessor::TimeStepType::System,
    1131             :                         OutputProcessor::StoreType::Average,
    1132           5 :                         this->Name);
    1133             : 
    1134          10 :     SetupOutputVariable(state,
    1135             :                         "Oil Cooler Heat Transfer Energy",
    1136             :                         Constant::Units::J,
    1137           5 :                         this->OilCoolerEnergy,
    1138             :                         OutputProcessor::TimeStepType::System,
    1139             :                         OutputProcessor::StoreType::Sum,
    1140           5 :                         this->Name);
    1141             : 
    1142          10 :     SetupOutputVariable(state,
    1143             :                         "Auxiliary Heat Transfer Rate",
    1144             :                         Constant::Units::W,
    1145           5 :                         this->QAuxiliary,
    1146             :                         OutputProcessor::TimeStepType::System,
    1147             :                         OutputProcessor::StoreType::Average,
    1148           5 :                         this->Name);
    1149             : 
    1150          10 :     SetupOutputVariable(state,
    1151             :                         "Auxiliary Heat Transfer Energy",
    1152             :                         Constant::Units::J,
    1153           5 :                         this->AuxiliaryEnergy,
    1154             :                         OutputProcessor::TimeStepType::System,
    1155             :                         OutputProcessor::StoreType::Sum,
    1156           5 :                         this->Name);
    1157           5 : }
    1158             : 
    1159       74732 : void ASHRAE205ChillerSpecs::findEvaporatorMassFlowRate(EnergyPlusData &state, Real64 &load, Real64 Cp)
    1160             : {
    1161             :     static constexpr std::string_view RoutineName("ASHRAE205ChillerSpecs::findEvaporatorMassFlowRate");
    1162       74732 :     const int PlantLoopNum = this->CWPlantLoc.loopNum;
    1163       74732 :     const DataPlant::LoopSideLocation LoopSideNum = this->CWPlantLoc.loopSideNum;
    1164       74732 :     const int BranchNum = this->CWPlantLoc.branchNum;
    1165       74732 :     const int CompNum = this->CWPlantLoc.compNum;
    1166             : 
    1167             :     // If FlowLock is False (0), the chiller sets the plant loop mdot
    1168             :     // If FlowLock is True (1),  the new resolved plant loop mdot is used
    1169       74732 :     if (state.dataPlnt->PlantLoop(PlantLoopNum).LoopSide(LoopSideNum).FlowLock == DataPlant::FlowLock::Unlocked) {
    1170       37342 :         this->PossibleSubcooling = !(state.dataPlnt->PlantLoop(PlantLoopNum).LoopSide(LoopSideNum).Branch(BranchNum).Comp(CompNum).CurOpSchemeType ==
    1171             :                                      DataPlant::OpScheme::CompSetPtBased);
    1172             : 
    1173       37342 :         Real64 evapDeltaTemp(0.0); // Evaporator temperature difference [C]
    1174             : 
    1175             :         // Either set the flow to the Constant value or calculate the flow for the variable volume case
    1176       37342 :         if ((this->FlowMode == DataPlant::FlowMode::Constant) || (this->FlowMode == DataPlant::FlowMode::NotModulated)) {
    1177             :             // Set the evaporator mass flow rate to design
    1178             :             // Start by assuming max (design) flow
    1179       37342 :             this->EvapMassFlowRate = this->EvapMassFlowRateMax;
    1180             :             // Use PlantUtilities::SetComponentFlowRate to decide actual flow
    1181       37342 :             PlantUtilities::SetComponentFlowRate(state, this->EvapMassFlowRate, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
    1182       37342 :             if (this->EvapMassFlowRate != 0.0) {
    1183       37342 :                 evapDeltaTemp = std::abs(load) / this->EvapMassFlowRate / Cp; // MyLoad = net evaporator capacity, QEvaporator
    1184             :             } else {
    1185           0 :                 evapDeltaTemp = 0.0;
    1186             :             }
    1187       37342 :             this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp - evapDeltaTemp;
    1188           0 :         } else if (this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) {
    1189           0 :             switch (state.dataPlnt->PlantLoop(PlantLoopNum).LoopDemandCalcScheme) {
    1190           0 :             case DataPlant::LoopDemandCalcScheme::SingleSetPoint: {
    1191             :                 // Calculate the Delta Temp from the inlet temp to the chiller outlet setpoint
    1192           0 :                 evapDeltaTemp =
    1193           0 :                     state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp - state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint;
    1194           0 :             } break;
    1195           0 :             case DataPlant::LoopDemandCalcScheme::DualSetPointDeadBand: {
    1196           0 :                 evapDeltaTemp =
    1197           0 :                     state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp - state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi;
    1198           0 :             } break;
    1199           0 :             default: {
    1200           0 :                 assert(false);
    1201             :             } break;
    1202             :             }
    1203             : 
    1204           0 :             if (evapDeltaTemp != 0) {
    1205           0 :                 this->EvapMassFlowRate = max(0.0, (std::abs(load) / Cp / evapDeltaTemp));
    1206           0 :                 if ((this->EvapMassFlowRate - this->EvapMassFlowRateMax) > DataBranchAirLoopPlant::MassFlowTolerance) this->PossibleSubcooling = true;
    1207             :                 // Check to see if the Maximum is exceeded, if so set to maximum
    1208           0 :                 this->EvapMassFlowRate = min(this->EvapMassFlowRateMax, this->EvapMassFlowRate);
    1209             :                 // Use PlantUtilities::SetComponentFlowRate to decide actual flow
    1210           0 :                 PlantUtilities::SetComponentFlowRate(
    1211           0 :                     state, this->EvapMassFlowRate, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
    1212             :                 // Should we recalculate this with the corrected setpoint?
    1213           0 :                 switch (state.dataPlnt->PlantLoop(PlantLoopNum).LoopDemandCalcScheme) {
    1214           0 :                 case DataPlant::LoopDemandCalcScheme::SingleSetPoint: {
    1215           0 :                     this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint;
    1216           0 :                 } break;
    1217           0 :                 case DataPlant::LoopDemandCalcScheme::DualSetPointDeadBand: {
    1218           0 :                     this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi;
    1219           0 :                 } break;
    1220           0 :                 default:
    1221           0 :                     break;
    1222             :                 }
    1223             :             } else {
    1224             :                 // Try to request zero flow
    1225           0 :                 this->EvapMassFlowRate = 0.0;
    1226             :                 // Use PlantUtilities::SetComponentFlowRate to decide actual flow
    1227           0 :                 PlantUtilities::SetComponentFlowRate(
    1228           0 :                     state, this->EvapMassFlowRate, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
    1229             :                 // No deltaT since component is not running
    1230           0 :                 this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp;
    1231           0 :                 this->QEvaporator = 0.0;
    1232             :                 // PartLoadRat = 0.0;
    1233           0 :                 this->ChillerPartLoadRatio = 0.0;
    1234             : 
    1235           0 :                 if (this->DeltaTErrCount < 1 && !state.dataGlobal->WarmupFlag) {
    1236           0 :                     ++this->DeltaTErrCount;
    1237           0 :                     ShowWarningError(state, "Evaporator DeltaTemp = 0 in mass flow calculation (Tevapin = Tevapout setpoint temp).");
    1238           0 :                     ShowContinueErrorTimeStamp(state, "");
    1239           0 :                 } else if (!state.dataGlobal->WarmupFlag) {
    1240           0 :                     ++this->ChillerCapFTError;
    1241           0 :                     ShowRecurringWarningErrorAtEnd(
    1242             :                         state,
    1243           0 :                         format("{} \"{}\": Evaporator DeltaTemp = 0 in mass flow calculation warning continues...", this->ObjectType, this->Name),
    1244           0 :                         this->DeltaTErrCountIndex,
    1245             :                         evapDeltaTemp,
    1246             :                         evapDeltaTemp);
    1247             :                 }
    1248             :             }
    1249             :         }
    1250             :     } else { // If FlowLock is True
    1251       37390 :         this->EvapMassFlowRate = state.dataLoopNodes->Node(this->EvapInletNodeNum).MassFlowRate;
    1252       37390 :         PlantUtilities::SetComponentFlowRate(state, this->EvapMassFlowRate, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
    1253             :         //       Some other component set the flow to 0. No reason to continue with calculations.
    1254       37390 :         if (this->EvapMassFlowRate == 0.0) {
    1255           0 :             load = 0.0;
    1256           0 :             return;
    1257             :         }
    1258             :     } // This is the end of the FlowLock Block
    1259             : 
    1260       74732 :     const Real64 rho = FluidProperties::GetDensityGlycol(state,
    1261       74732 :                                                          state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidName,
    1262             :                                                          Constant::CWInitConvTemp,
    1263       74732 :                                                          state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidIndex,
    1264             :                                                          RoutineName);
    1265             : 
    1266       74732 :     this->EvapVolFlowRate = this->EvapMassFlowRate / rho;
    1267             : }
    1268             : 
    1269      251917 : void ASHRAE205ChillerSpecs::calculate(EnergyPlusData &state, Real64 &MyLoad, bool const RunFlag)
    1270             : {
    1271             :     static constexpr std::string_view RoutineName("CalcElecASHRAE205ChillerModel");
    1272      251917 :     this->ChillerPartLoadRatio = 0.0;
    1273      251917 :     this->ChillerCyclingRatio = 1.0;
    1274      251917 :     this->ChillerFalseLoadRate = 0.0;
    1275      251917 :     this->EvapMassFlowRate = 0.0;
    1276      251917 :     this->CondMassFlowRate = 0.0;
    1277      251917 :     this->Power = 0.0;
    1278      251917 :     this->QCondenser = 0.0;
    1279      251917 :     this->QEvaporator = 0.0;
    1280      251917 :     this->QOilCooler = 0.0;
    1281      251917 :     this->QAuxiliary = 0.0;
    1282      251917 :     int PlantLoopNum = this->CWPlantLoc.loopNum;
    1283      251917 :     DataPlant::LoopSideLocation LoopSideNum = this->CWPlantLoc.loopSideNum;
    1284      251917 :     int BranchNum = this->CWPlantLoc.branchNum;
    1285      251917 :     int CompNum = this->CWPlantLoc.compNum;
    1286             : 
    1287             :     // Set module-level chiller evaporator and condenser inlet temperature variables
    1288             :     // using prior time step's temperature
    1289      251917 :     Real64 condInletTemp = state.dataLoopNodes->Node(this->CondInletNodeNum).Temp;
    1290      251917 :     this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapOutletNodeNum).Temp;
    1291             : 
    1292             :     // If no loop demand or chiller OFF, return
    1293             :     // If chiller load is 0 or chiller is not running then leave the subroutine. Before leaving
    1294             :     //  if the component control is SERIESACTIVE we set the component flow to inlet flow so that
    1295             :     //  flow resolver will not shut down the branch
    1296             : 
    1297             :     // Calculate performance for standby (only used when off or cycling)
    1298             :     Real64 standbyPower =
    1299      251917 :         this->Representation->performance.performance_map_standby.calculate_performance(this->AmbientTemp, this->InterpolationType).input_power;
    1300      251917 :     if (MyLoad >= 0 || !RunFlag) {
    1301      194394 :         if (this->EquipFlowCtrl == DataBranchAirLoopPlant::ControlType::SeriesActive ||
    1302       17701 :             state.dataPlnt->PlantLoop(PlantLoopNum).LoopSide(LoopSideNum).FlowLock == DataPlant::FlowLock::Locked) {
    1303      167840 :             this->EvapMassFlowRate = state.dataLoopNodes->Node(this->EvapInletNodeNum).MassFlowRate;
    1304             :         }
    1305      176693 :         if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
    1306      176693 :             if (DataPlant::CompData::getPlantComponent(state, this->CDPlantLoc).FlowCtrl == DataBranchAirLoopPlant::ControlType::SeriesActive) {
    1307           0 :                 this->CondMassFlowRate = state.dataLoopNodes->Node(this->CondInletNodeNum).MassFlowRate;
    1308             :             }
    1309             :         }
    1310      176693 :         this->Power = standbyPower;
    1311      176693 :         this->AmbientZoneGain = standbyPower;
    1312      177217 :         return;
    1313             :     }
    1314             : 
    1315             : // Revisit
    1316             : #if 0
    1317             :         //        // If there is a fault of chiller fouling
    1318             : //        if (this->FaultyChillerFoulingFlag && (!state.dataGlobal->WarmupFlag) && (!state.dataGlobal->DoingSizing) &&
    1319             : //            (!state.dataGlobal->KickOffSimulation)) {
    1320             : //            int FaultIndex = this->FaultyChillerFoulingIndex;
    1321             : //            Real64 NomCap_ff = ChillerRefCap;
    1322             : //            Real64 ReferenceCOP_ff = ReferenceCOP;
    1323             : //
    1324             : //            // calculate the Faulty Chiller Fouling Factor using fault information
    1325             : //            this->FaultyChillerFoulingFactor = state.dataFaultsMgr->FaultsChillerFouling(FaultIndex).CalFoulingFactor(state);
    1326             : //
    1327             : //            // update the Chiller nominal capacity and COP at faulty cases
    1328             : //            ChillerRefCap = NomCap_ff * this->FaultyChillerFoulingFactor;
    1329             : //            ReferenceCOP = ReferenceCOP_ff * this->FaultyChillerFoulingFactor;
    1330             : //        }
    1331             : #endif // 0
    1332             : 
    1333             :     // Set mass flow rates
    1334       75224 :     if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
    1335       75224 :         this->CondMassFlowRate = this->CondMassFlowRateMax;
    1336       75224 :         PlantUtilities::SetComponentFlowRate(state, this->CondMassFlowRate, this->CondInletNodeNum, this->CondOutletNodeNum, this->CDPlantLoc);
    1337       75224 :         PlantUtilities::PullCompInterconnectTrigger(
    1338       75224 :             state, this->CWPlantLoc, this->CondMassFlowIndex, this->CDPlantLoc, DataPlant::CriteriaType::MassFlowRate, this->CondMassFlowRate);
    1339             : 
    1340       75224 :         if (this->CondMassFlowRate < DataBranchAirLoopPlant::MassFlowTolerance) return;
    1341             :     }
    1342       74748 :     Real64 EvapOutletTempSetPoint(0.0); // Evaporator outlet temperature setpoint [C]
    1343       74748 :     switch (state.dataPlnt->PlantLoop(PlantLoopNum).LoopDemandCalcScheme) {
    1344       74748 :     case DataPlant::LoopDemandCalcScheme::SingleSetPoint: {
    1345      224244 :         if ((this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) ||
    1346       74748 :             (state.dataPlnt->PlantLoop(PlantLoopNum).LoopSide(LoopSideNum).Branch(BranchNum).Comp(CompNum).CurOpSchemeType ==
    1347      149496 :              DataPlant::OpScheme::CompSetPtBased) ||
    1348       74748 :             (state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint != DataLoopNode::SensedNodeFlagValue)) {
    1349             :             // there will be a valid setpoint on outlet
    1350           0 :             EvapOutletTempSetPoint = state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint;
    1351             :         } else { // use plant loop overall setpoint
    1352       74748 :             EvapOutletTempSetPoint = state.dataLoopNodes->Node(state.dataPlnt->PlantLoop(PlantLoopNum).TempSetPointNodeNum).TempSetPoint;
    1353             :         }
    1354       74748 :     } break;
    1355           0 :     case DataPlant::LoopDemandCalcScheme::DualSetPointDeadBand: {
    1356           0 :         if ((this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) ||
    1357           0 :             (state.dataPlnt->PlantLoop(PlantLoopNum).LoopSide(LoopSideNum).Branch(BranchNum).Comp(CompNum).CurOpSchemeType ==
    1358           0 :              DataPlant::OpScheme::CompSetPtBased) ||
    1359           0 :             (state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi != DataLoopNode::SensedNodeFlagValue)) {
    1360             :             // there will be a valid setpoint on outlet
    1361           0 :             EvapOutletTempSetPoint = state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi;
    1362             :         } else { // use plant loop overall setpoint
    1363           0 :             EvapOutletTempSetPoint = state.dataLoopNodes->Node(state.dataPlnt->PlantLoop(PlantLoopNum).TempSetPointNodeNum).TempSetPointHi;
    1364             :         }
    1365           0 :     } break;
    1366           0 :     default: {
    1367           0 :         assert(false);
    1368             :     } break;
    1369             :     }
    1370             : // Revisit
    1371             : #if 0
    1372             :         //        // If there is a fault of Chiller SWT Sensor
    1373             : //        if (this->FaultyChillerSWTFlag && (!state.dataGlobal->WarmupFlag) && (!state.dataGlobal->DoingSizing) && (!state.dataGlobal->KickOffSimulation)) {
    1374             : //            int FaultIndex = this->FaultyChillerSWTIndex;
    1375             : //            Real64 EvapOutletTempSetPoint_ff = EvapOutletTempSetPoint;
    1376             : //
    1377             : //            // calculate the sensor offset using fault information
    1378             : //            this->FaultyChillerSWTOffset = state.dataFaultsMgr->FaultsChillerSWTSensor(FaultIndex).CalFaultOffsetAct(state);
    1379             : //            // update the EvapOutletTempSetPoint
    1380             : //            EvapOutletTempSetPoint =
    1381             : //                    max(this->TempLowLimitEvapOut,
    1382             : //                        min(state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp, EvapOutletTempSetPoint_ff - this->FaultyChillerSWTOffset));
    1383             : //            this->FaultyChillerSWTOffset = EvapOutletTempSetPoint_ff - EvapOutletTempSetPoint;
    1384             : //        }
    1385             : #endif // 0
    1386             :        // When implemented, TODO: correct temperature if using heat recovery
    1387             : 
    1388       74748 :     this->EvapMassFlowRate = state.dataLoopNodes->Node(this->EvapInletNodeNum).MassFlowRate;
    1389             :     // If some other component set the flow to 0, no reason to continue with calculations.
    1390       74748 :     if (this->EvapMassFlowRate == 0.0) {
    1391          48 :         MyLoad = 0.0;
    1392          48 :         return;
    1393             :     }
    1394             : 
    1395       74700 :     Real64 CpEvap = FluidProperties::GetSpecificHeatGlycol(state,
    1396       74700 :                                                            state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidName,
    1397       74700 :                                                            state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp,
    1398       74700 :                                                            state.dataPlnt->PlantLoop(this->CWPlantLoc.loopNum).FluidIndex,
    1399             :                                                            RoutineName);
    1400             : 
    1401             :     // Calculate mass flow rate based on MyLoad (TODO: then adjust it after determining if chiller can meet the load)
    1402       74700 :     this->findEvaporatorMassFlowRate(state, MyLoad, CpEvap);
    1403             : 
    1404             :     // Available chiller capacity is capacity at the highest sequence number; i.e. max chiller capacity
    1405       74700 :     const Real64 maximumChillerCap = this->Representation->performance.performance_map_cooling
    1406      149400 :                                          .calculate_performance(this->EvapVolFlowRate,
    1407       74700 :                                                                 this->EvapOutletTemp + Constant::Kelvin,
    1408             :                                                                 this->CondVolFlowRate,
    1409       74700 :                                                                 this->CondInletTemp + Constant::Kelvin,
    1410       74700 :                                                                 this->MaxSequenceNumber,
    1411             :                                                                 this->InterpolationType)
    1412       74700 :                                          .net_evaporator_capacity;
    1413       74700 :     const Real64 minimumChillerCap = this->Representation->performance.performance_map_cooling
    1414      149400 :                                          .calculate_performance(this->EvapVolFlowRate,
    1415       74700 :                                                                 this->EvapOutletTemp + Constant::Kelvin,
    1416             :                                                                 this->CondVolFlowRate,
    1417       74700 :                                                                 this->CondInletTemp + Constant::Kelvin,
    1418       74700 :                                                                 this->MinSequenceNumber,
    1419             :                                                                 this->InterpolationType)
    1420       74700 :                                          .net_evaporator_capacity;
    1421             :     // Part load ratio based on load and available chiller capacity; cap at max P.L.R. (can be >1)
    1422       74700 :     this->ChillerPartLoadRatio = (maximumChillerCap > 0) ? max(0.0, std::abs(MyLoad) / maximumChillerCap) : 0.0;
    1423             :     // Minimum capacity ratio, under which cycling occurs
    1424       74700 :     this->MinPartLoadRat = (maximumChillerCap > 0) ? minimumChillerCap / maximumChillerCap : 0.0;
    1425       74700 :     Real64 partLoadSeqNum{0.};
    1426             : 
    1427             :     // Chiller may be operating in one of three modes: cycling, modulating, or full capacity
    1428       74700 :     if (this->ChillerPartLoadRatio < this->MinPartLoadRat) // Cycling
    1429             :     {
    1430        7229 :         this->ChillerCyclingRatio = this->ChillerPartLoadRatio / this->MinPartLoadRat;
    1431        7229 :         partLoadSeqNum = this->MinSequenceNumber;
    1432       67471 :     } else if (this->ChillerPartLoadRatio < 1.0) // Modulating
    1433             :     {
    1434             :         // Use performance map to find the fractional sequence number (which most closely matches our part load)
    1435       67439 :         Real64 constexpr accuracy{0.0001};
    1436       67439 :         int constexpr maxIter{500};
    1437       67439 :         int solFla{0};
    1438      876707 :         auto f = [MyLoad, this](Real64 partLoadSeqNum) {
    1439      202317 :             this->QEvaporator = this->Representation->performance.performance_map_cooling
    1440      404634 :                                     .calculate_performance(this->EvapVolFlowRate,
    1441      202317 :                                                            this->EvapOutletTemp + Constant::Kelvin,
    1442             :                                                            this->CondVolFlowRate,
    1443      202317 :                                                            this->CondInletTemp + Constant::Kelvin,
    1444             :                                                            partLoadSeqNum,
    1445             :                                                            this->InterpolationType)
    1446      202317 :                                     .net_evaporator_capacity;
    1447      202317 :             return std::abs(MyLoad) - this->QEvaporator;
    1448       67439 :         };
    1449             :         // Iteratively calculate this->QEvaporator by modulating partLoadSeqNum, ending at Q_Evaporator(partLoadSeqNum)
    1450       67439 :         General::SolveRoot(state, accuracy, maxIter, solFla, partLoadSeqNum, f, this->MinSequenceNumber, this->MaxSequenceNumber);
    1451             :     } else // Full capacity: std::abs(MyLoad) > this->QEvaporator
    1452             :     {
    1453          32 :         this->QEvaporator = maximumChillerCap;
    1454          32 :         partLoadSeqNum = this->MaxSequenceNumber;
    1455             :         // SolveRoot stuff for eventual flow rate (can always calculate Ts if you have MFR and capacity)
    1456             :         // recursion? Revisit.
    1457          32 :         findEvaporatorMassFlowRate(state, this->QEvaporator, CpEvap);
    1458             :         // if MFR changes, recalculate chiller capacity.
    1459             :         // repeat until load <= capacity
    1460             :     }
    1461             : 
    1462             :     // Use performance map to get the rest of results at new sequence number
    1463             :     auto lookupVariablesCooling = // This is a struct returned by value, relying on RVO (THIS_AUTO_OK)
    1464       74700 :         this->Representation->performance.performance_map_cooling.calculate_performance(this->EvapVolFlowRate,
    1465       74700 :                                                                                         this->EvapOutletTemp + Constant::Kelvin,
    1466             :                                                                                         this->CondVolFlowRate,
    1467       74700 :                                                                                         this->CondInletTemp + Constant::Kelvin,
    1468             :                                                                                         partLoadSeqNum,
    1469             :                                                                                         this->InterpolationType);
    1470       74700 :     this->QEvaporator = lookupVariablesCooling.net_evaporator_capacity * this->ChillerCyclingRatio;
    1471             : 
    1472       74700 :     Real64 evapDeltaTemp = this->QEvaporator / this->EvapMassFlowRate / CpEvap;
    1473       74700 :     this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp - evapDeltaTemp;
    1474             : 
    1475             :     // TODO: Revisit fault
    1476             : #if 0
    1477             :         // If there is a fault of Chiller SWT Sensor
    1478             :         if (this->FaultyChillerSWTFlag && (!state.dataGlobal->WarmupFlag) && (!state.dataGlobal->DoingSizing) &&
    1479             :             (!state.dataGlobal->KickOffSimulation) && (this->EvapMassFlowRate > 0)) {
    1480             :             // calculate directly affected variables at faulty case: EvapOutletTemp, EvapMassFlowRate, QEvaporator
    1481             :             int FaultIndex = this->FaultyChillerSWTIndex;
    1482             :             bool VarFlowFlag = false;
    1483             :             state.dataFaultsMgr->FaultsChillerSWTSensor(FaultIndex)
    1484             :                     .CalFaultChillerSWT(VarFlowFlag,
    1485             :                                         this->FaultyChillerSWTOffset,
    1486             :                                         Cp,
    1487             :                                         state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp,
    1488             :                                         this->EvapOutletTemp,
    1489             :                                         this->EvapMassFlowRate,
    1490             :                                         this->QEvaporator);
    1491             :             // update corresponding variables at faulty case
    1492             :         }
    1493             : #endif // 0
    1494             : 
    1495       74700 :     Real64 cd = this->Representation->performance.cycling_degradation_coefficient;
    1496       74700 :     Real64 cyclingFactor{(1.0 - cd) + (cd * this->ChillerCyclingRatio)};
    1497       74700 :     Real64 runtimeFactor{this->ChillerCyclingRatio / cyclingFactor};
    1498       74700 :     this->Power = lookupVariablesCooling.input_power * runtimeFactor + ((1 - this->ChillerCyclingRatio) * standbyPower);
    1499       74700 :     this->QCondenser = lookupVariablesCooling.net_condenser_capacity * this->ChillerCyclingRatio;
    1500       74700 :     this->QOilCooler = lookupVariablesCooling.oil_cooler_heat;
    1501       74700 :     this->QAuxiliary = lookupVariablesCooling.auxiliary_heat;
    1502       74700 :     Real64 QExternallyCooled{0.0};
    1503       74700 :     if (this->OilCoolerInletNode) {
    1504       32536 :         QExternallyCooled += this->QOilCooler;
    1505             :     }
    1506       74700 :     if (this->AuxiliaryHeatInletNode) {
    1507       32536 :         QExternallyCooled += this->QAuxiliary;
    1508             :     }
    1509             :     // Energy balance on the chiller system gives the amount of heat lost to the ambient zone
    1510       74700 :     this->AmbientZoneGain = this->QEvaporator + this->Power - (this->QCondenser + QExternallyCooled);
    1511             : 
    1512       74700 :     Real64 CpCond = FluidProperties::GetSpecificHeatGlycol(state,
    1513       74700 :                                                            state.dataPlnt->PlantLoop(this->CDPlantLoc.loopNum).FluidName,
    1514             :                                                            condInletTemp,
    1515       74700 :                                                            state.dataPlnt->PlantLoop(this->CDPlantLoc.loopNum).FluidIndex,
    1516             :                                                            RoutineName);
    1517       74700 :     this->CondOutletTemp = this->QCondenser / this->CondMassFlowRate / CpCond + condInletTemp;
    1518             : 
    1519             :     // Oil cooler and Auxiliary Heat delta-T calculations
    1520       74700 :     if (this->OilCoolerInletNode) {
    1521       32536 :         Real64 oilCoolerDeltaTemp = 0.0;
    1522       32536 :         PlantUtilities::SetComponentFlowRate(
    1523       32536 :             state, this->OilCoolerMassFlowRate, this->OilCoolerInletNode, this->OilCoolerOutletNode, this->OCPlantLoc);
    1524             : 
    1525       32536 :         Real64 CpOilCooler = FluidProperties::GetSpecificHeatGlycol(state,
    1526       32536 :                                                                     state.dataPlnt->PlantLoop(this->OCPlantLoc.loopNum).FluidName,
    1527       32536 :                                                                     state.dataLoopNodes->Node(this->OilCoolerInletNode).Temp,
    1528       32536 :                                                                     state.dataPlnt->PlantLoop(this->OCPlantLoc.loopNum).FluidIndex,
    1529             :                                                                     RoutineName);
    1530             : 
    1531       32536 :         if (this->OilCoolerMassFlowRate != 0.0) {
    1532           0 :             oilCoolerDeltaTemp = this->QOilCooler / (this->OilCoolerMassFlowRate * CpOilCooler);
    1533             :         } else {
    1534       32536 :             oilCoolerDeltaTemp = 0.0;
    1535             :         }
    1536       32536 :         state.dataLoopNodes->Node(this->OilCoolerOutletNode).Temp = state.dataLoopNodes->Node(this->OilCoolerInletNode).Temp - oilCoolerDeltaTemp;
    1537             :     }
    1538       74700 :     if (this->AuxiliaryHeatInletNode) {
    1539       32536 :         Real64 auxiliaryDeltaTemp = 0.0;
    1540       32536 :         PlantUtilities::SetComponentFlowRate(
    1541       32536 :             state, this->AuxiliaryMassFlowRate, this->AuxiliaryHeatInletNode, this->AuxiliaryHeatOutletNode, this->AHPlantLoc);
    1542             : 
    1543       32536 :         Real64 CpAux = FluidProperties::GetSpecificHeatGlycol(state,
    1544       32536 :                                                               state.dataPlnt->PlantLoop(this->AHPlantLoc.loopNum).FluidName,
    1545       32536 :                                                               state.dataLoopNodes->Node(this->AuxiliaryHeatInletNode).Temp,
    1546       32536 :                                                               state.dataPlnt->PlantLoop(this->AHPlantLoc.loopNum).FluidIndex,
    1547             :                                                               RoutineName);
    1548             : 
    1549       32536 :         if (this->AuxiliaryMassFlowRate != 0.0) {
    1550           0 :             auxiliaryDeltaTemp = this->QAuxiliary / (this->AuxiliaryMassFlowRate * CpAux);
    1551             :         } else {
    1552       32536 :             auxiliaryDeltaTemp = 0.0;
    1553             :         }
    1554       32536 :         state.dataLoopNodes->Node(this->AuxiliaryHeatOutletNode).Temp =
    1555       32536 :             state.dataLoopNodes->Node(this->AuxiliaryHeatInletNode).Temp - auxiliaryDeltaTemp;
    1556             :     }
    1557             : }
    1558             : 
    1559      251917 : void ASHRAE205ChillerSpecs::update(EnergyPlusData &state, Real64 const MyLoad, bool const RunFlag)
    1560             : {
    1561      251917 :     if (MyLoad >= 0.0 || !RunFlag) { // Chiller not running so pass inlet states to outlet states
    1562             :         // Set node temperatures
    1563      176741 :         state.dataLoopNodes->Node(this->EvapOutletNodeNum).Temp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp;
    1564      176741 :         state.dataLoopNodes->Node(this->CondOutletNodeNum).Temp = state.dataLoopNodes->Node(this->CondInletNodeNum).Temp;
    1565      176741 :         if (this->OilCoolerInletNode) {
    1566       78764 :             state.dataLoopNodes->Node(this->OilCoolerOutletNode).Temp = state.dataLoopNodes->Node(this->OilCoolerInletNode).Temp;
    1567             :         }
    1568      176741 :         if (this->AuxiliaryHeatInletNode) {
    1569       78764 :             state.dataLoopNodes->Node(this->AuxiliaryHeatOutletNode).Temp = state.dataLoopNodes->Node(this->AuxiliaryHeatInletNode).Temp;
    1570             :         }
    1571             : 
    1572      176741 :         this->ChillerPartLoadRatio = 0.0;
    1573      176741 :         this->ChillerCyclingRatio = 0.0;
    1574      176741 :         this->ChillerFalseLoadRate = 0.0;
    1575      176741 :         this->ChillerFalseLoad = 0.0;
    1576      176741 :         this->QEvaporator = 0.0;
    1577      176741 :         this->QCondenser = 0.0;
    1578      176741 :         this->Energy = 0.0;
    1579      176741 :         this->EvapEnergy = 0.0;
    1580      176741 :         this->CondEnergy = 0.0;
    1581      176741 :         this->QOilCooler = 0.0;
    1582      176741 :         this->QAuxiliary = 0.0;
    1583      176741 :         this->OilCoolerEnergy = 0.0;
    1584      176741 :         this->AuxiliaryEnergy = 0.0;
    1585      176741 :         this->EvapInletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp;
    1586      176741 :         this->CondInletTemp = state.dataLoopNodes->Node(this->CondInletNodeNum).Temp;
    1587      176741 :         this->CondOutletTemp = state.dataLoopNodes->Node(this->CondOutletNodeNum).Temp;
    1588      176741 :         this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapOutletNodeNum).Temp;
    1589      176741 :         this->ActualCOP = 0.0;
    1590             : 
    1591             :     } else { // Chiller is running, so pass calculated values
    1592             :         // Set node temperatures
    1593       75176 :         state.dataLoopNodes->Node(this->EvapOutletNodeNum).Temp = this->EvapOutletTemp;
    1594       75176 :         state.dataLoopNodes->Node(this->CondOutletNodeNum).Temp = this->CondOutletTemp;
    1595             :         // Set node flow rates;  for these load based models
    1596             :         // assume that sufficient evaporator flow rate is available
    1597       75176 :         this->EvapEnergy = this->QEvaporator * state.dataHVACGlobal->TimeStepSysSec;
    1598       75176 :         this->CondEnergy = this->QCondenser * state.dataHVACGlobal->TimeStepSysSec;
    1599       75176 :         this->OilCoolerEnergy = this->QOilCooler * state.dataHVACGlobal->TimeStepSysSec;
    1600       75176 :         this->AuxiliaryEnergy = this->QAuxiliary * state.dataHVACGlobal->TimeStepSysSec;
    1601       75176 :         this->EvapInletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp;
    1602       75176 :         this->CondInletTemp = state.dataLoopNodes->Node(this->CondInletNodeNum).Temp;
    1603       75176 :         this->CondOutletTemp = state.dataLoopNodes->Node(this->CondOutletNodeNum).Temp;
    1604       75176 :         if (this->Power != 0.0) {
    1605       74700 :             this->ActualCOP = this->QEvaporator / this->Power;
    1606             :         } else {
    1607         476 :             this->ActualCOP = 0.0;
    1608             :         }
    1609             :     }
    1610             : 
    1611             :     // Calculate in case of standby power
    1612      251917 :     this->AmbientZoneGainEnergy = this->AmbientZoneGain * state.dataHVACGlobal->TimeStepSysSec;
    1613      251917 :     this->Energy = this->Power * state.dataHVACGlobal->TimeStepSysSec;
    1614      251917 : }
    1615             : 
    1616      500762 : void ASHRAE205ChillerSpecs::simulate(
    1617             :     EnergyPlusData &state, const PlantLocation &calledFromLocation, bool FirstHVACIteration, Real64 &CurLoad, bool RunFlag)
    1618             : {
    1619      500762 :     if (calledFromLocation.loopNum == this->CWPlantLoc.loopNum) {
    1620      251917 :         this->initialize(state, RunFlag, CurLoad);
    1621      251917 :         this->calculate(state, CurLoad, RunFlag);
    1622      251917 :         this->update(state, CurLoad, RunFlag);
    1623      248845 :     } else if (calledFromLocation.loopNum == this->CDPlantLoc.loopNum) {
    1624      137305 :         DataPlant::LoopSideLocation LoopSide = this->CDPlantLoc.loopSideNum;
    1625      137305 :         PlantUtilities::UpdateChillerComponentCondenserSide(state,
    1626      137305 :                                                             calledFromLocation.loopNum,
    1627             :                                                             LoopSide,
    1628             :                                                             DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
    1629             :                                                             this->CondInletNodeNum,
    1630             :                                                             this->CondOutletNodeNum,
    1631             :                                                             this->QCondenser,
    1632             :                                                             this->CondInletTemp,
    1633             :                                                             this->CondOutletTemp,
    1634             :                                                             this->CondMassFlowRate,
    1635             :                                                             FirstHVACIteration);
    1636             :     }
    1637      500762 : }
    1638             : 
    1639          70 : void ASHRAE205ChillerSpecs::getDesignCapacities(
    1640             :     [[maybe_unused]] EnergyPlusData &state, const PlantLocation &calledFromLocation, Real64 &MaxLoad, Real64 &MinLoad, Real64 &OptLoad)
    1641             : {
    1642          70 :     if (calledFromLocation.loopNum == this->CWPlantLoc.loopNum) {
    1643          25 :         MinLoad = this->Representation->performance.performance_map_cooling
    1644          50 :                       .calculate_performance(this->EvapVolFlowRate,
    1645          25 :                                              this->TempRefEvapOut + Constant::Kelvin,
    1646             :                                              this->CondVolFlowRate,
    1647          25 :                                              this->TempRefCondIn + Constant::Kelvin,
    1648          25 :                                              this->MinSequenceNumber,
    1649             :                                              this->InterpolationType)
    1650          25 :                       .net_evaporator_capacity;
    1651          25 :         MaxLoad = this->RefCap;
    1652          25 :         OptLoad = MaxLoad;
    1653             :     } else {
    1654          45 :         MinLoad = 0.0;
    1655          45 :         MaxLoad = 0.0;
    1656          45 :         OptLoad = 0.0;
    1657             :     }
    1658          70 : }
    1659             : 
    1660             : } // namespace EnergyPlus::ChillerElectricASHRAE205

Generated by: LCOV version 1.14