LCOV - code coverage report
Current view: top level - EnergyPlus - PipeHeatTransfer.cc (source / functions) Hit Total Coverage
Test: lcov.output.filtered Lines: 730 876 83.3 %
Date: 2024-08-23 23:50:59 Functions: 15 16 93.8 %

          Line data    Source code
       1             : // EnergyPlus, Copyright (c) 1996-2024, The Board of Trustees of the University of Illinois,
       2             : // The Regents of the University of California, through Lawrence Berkeley National Laboratory
       3             : // (subject to receipt of any required approvals from the U.S. Dept. of Energy), Oak Ridge
       4             : // National Laboratory, managed by UT-Battelle, Alliance for Sustainable Energy, LLC, and other
       5             : // contributors. All rights reserved.
       6             : //
       7             : // NOTICE: This Software was developed under funding from the U.S. Department of Energy and the
       8             : // U.S. Government consequently retains certain rights. As such, the U.S. Government has been
       9             : // granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
      10             : // worldwide license in the Software to reproduce, distribute copies to the public, prepare
      11             : // derivative works, and perform publicly and display publicly, and to permit others to do so.
      12             : //
      13             : // Redistribution and use in source and binary forms, with or without modification, are permitted
      14             : // provided that the following conditions are met:
      15             : //
      16             : // (1) Redistributions of source code must retain the above copyright notice, this list of
      17             : //     conditions and the following disclaimer.
      18             : //
      19             : // (2) Redistributions in binary form must reproduce the above copyright notice, this list of
      20             : //     conditions and the following disclaimer in the documentation and/or other materials
      21             : //     provided with the distribution.
      22             : //
      23             : // (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
      24             : //     the University of Illinois, U.S. Dept. of Energy nor the names of its contributors may be
      25             : //     used to endorse or promote products derived from this software without specific prior
      26             : //     written permission.
      27             : //
      28             : // (4) Use of EnergyPlus(TM) Name. If Licensee (i) distributes the software in stand-alone form
      29             : //     without changes from the version obtained under this License, or (ii) Licensee makes a
      30             : //     reference solely to the software portion of its product, Licensee must refer to the
      31             : //     software as "EnergyPlus version X" software, where "X" is the version number Licensee
      32             : //     obtained under this License and may not use a different name for the software. Except as
      33             : //     specifically required in this Section (4), Licensee shall not use in a company name, a
      34             : //     product name, in advertising, publicity, or other promotional activities any name, trade
      35             : //     name, trademark, logo, or other designation of "EnergyPlus", "E+", "e+" or confusingly
      36             : //     similar designation, without the U.S. Department of Energy's prior written consent.
      37             : //
      38             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
      39             : // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
      40             : // AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
      41             : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      42             : // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
      43             : // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      44             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
      45             : // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
      46             : // POSSIBILITY OF SUCH DAMAGE.
      47             : 
      48             : // C++ Headers
      49             : #include <cmath>
      50             : #include <memory>
      51             : 
      52             : // ObjexxFCL Headers
      53             : #include <ObjexxFCL/Array.functions.hh>
      54             : #include <ObjexxFCL/Array3D.hh>
      55             : #include <ObjexxFCL/Fmath.hh>
      56             : 
      57             : // EnergyPlus Headers
      58             : #include <EnergyPlus/BranchNodeConnections.hh>
      59             : #include <EnergyPlus/Construction.hh>
      60             : #include <EnergyPlus/ConvectionCoefficients.hh>
      61             : #include <EnergyPlus/Data/EnergyPlusData.hh>
      62             : #include <EnergyPlus/DataEnvironment.hh>
      63             : #include <EnergyPlus/DataHVACGlobals.hh>
      64             : #include <EnergyPlus/DataHeatBalance.hh>
      65             : #include <EnergyPlus/DataIPShortCuts.hh>
      66             : #include <EnergyPlus/DataLoopNode.hh>
      67             : #include <EnergyPlus/FluidProperties.hh>
      68             : #include <EnergyPlus/General.hh>
      69             : #include <EnergyPlus/GlobalNames.hh>
      70             : #include <EnergyPlus/GroundTemperatureModeling/GroundTemperatureModelManager.hh>
      71             : #include <EnergyPlus/HeatBalanceInternalHeatGains.hh>
      72             : #include <EnergyPlus/InputProcessing/InputProcessor.hh>
      73             : #include <EnergyPlus/Material.hh>
      74             : #include <EnergyPlus/NodeInputManager.hh>
      75             : #include <EnergyPlus/OutAirNodeManager.hh>
      76             : #include <EnergyPlus/OutputProcessor.hh>
      77             : #include <EnergyPlus/PipeHeatTransfer.hh>
      78             : #include <EnergyPlus/Plant/DataPlant.hh>
      79             : #include <EnergyPlus/PlantUtilities.hh>
      80             : #include <EnergyPlus/ScheduleManager.hh>
      81             : #include <EnergyPlus/UtilityRoutines.hh>
      82             : #include <EnergyPlus/ZoneTempPredictorCorrector.hh>
      83             : 
      84             : namespace EnergyPlus::PipeHeatTransfer {
      85             : 
      86             : // Module containing the routines dealing with pipes with transport delay
      87             : // and heat transfer.
      88             : 
      89             : // MODULE INFORMATION:
      90             : //       AUTHOR         Simon Rees
      91             : //       DATE WRITTEN   July 2007
      92             : //       MODIFIED       May 2008
      93             : //       RE-ENGINEERED  na
      94             : 
      95             : // PURPOSE OF THIS MODULE:
      96             : // The purpose of this module is to simulate a pipe with heat transfer
      97             : 
      98             : // METHODOLOGY EMPLOYED:
      99             : // An implicit finite difference method is used to solve the temperature distribution of the
     100             : // fluid in the pipe as a result of the transport delay and heat transfer to the environment.
     101             : // For buried pipes, the simulation involves an implicit finite difference model of the soil,
     102             : // which was originally based on Piechowski's thesis (below).  Equation numbers for
     103             : // pipe:underground calculations are from Piechowski's thesis.  In Piechowski, the near-pipe
     104             : // region is solved with a detailed finite difference grid, this current model makes use of
     105             : // the Hanby model to simulate the actual pipe.
     106             : 
     107             : // Kusuda, T. & Achenbach, P. (1965), 'Earth temperature and thermal diffusivity at
     108             : //     selected stations in the united states', ASHRAE Transactions 71(1), 61-75.
     109             : // Piechowski, M. (1996), A Ground Coupled Heat Pump System with Energy Storage,
     110             : //     PhD thesis, University of Melbourne.
     111             : 
     112             : // OTHER NOTES: Equation Numbers listed in buried pipe routines are from Piechowski's thesis
     113             : 
     114             : enum class PipeIndoorBoundaryType
     115             : {
     116             :     Invalid = -1,
     117             :     Zone,
     118             :     Schedule,
     119             :     Num
     120             : };
     121             : constexpr std::array<std::string_view, static_cast<int>(PipeIndoorBoundaryType::Num)> pipeIndoorBoundaryTypeNamesUC = {"ZONE", "SCHEDULE"};
     122             : 
     123             : // Using/Aliasing
     124             : using namespace GroundTemperatureManager;
     125             : 
     126             : // Functions
     127             : 
     128           4 : PlantComponent *PipeHTData::factory(EnergyPlusData &state, DataPlant::PlantEquipmentType objectType, std::string const &objectName)
     129             : {
     130             :     // Process the input data for pipes if it hasn't been done already
     131           4 :     if (state.dataPipeHT->GetPipeInputFlag) {
     132           4 :         GetPipesHeatTransfer(state);
     133           4 :         state.dataPipeHT->GetPipeInputFlag = false;
     134             :     }
     135             :     // Now look for this particular pipe in the list
     136           4 :     for (auto &pipe : state.dataPipeHT->PipeHT) {
     137           4 :         if (pipe.Type == objectType && pipe.Name == objectName) {
     138           4 :             return &pipe;
     139             :         }
     140             :     }
     141             :     // If we didn't find it, fatal
     142           0 :     ShowFatalError(state, format("PipeHTFactory: Error getting inputs for pipe named: {}", objectName));
     143             :     // Shut up the compiler
     144           0 :     return nullptr;
     145             : }
     146             : 
     147       58100 : void PipeHTData::simulate(EnergyPlusData &state,
     148             :                           [[maybe_unused]] const PlantLocation &calledFromLocation,
     149             :                           bool const FirstHVACIteration,
     150             :                           [[maybe_unused]] Real64 &CurLoad,
     151             :                           [[maybe_unused]] bool const RunFlag)
     152             : {
     153       58100 :     this->InitPipesHeatTransfer(state, FirstHVACIteration);
     154             :     // make the calculations
     155      802816 :     for (int InnerTimeStepCtr = 1; InnerTimeStepCtr <= state.dataPipeHT->nsvNumInnerTimeSteps; ++InnerTimeStepCtr) {
     156      744716 :         switch (this->EnvironmentPtr) {
     157      186179 :         case EnvrnPtr::GroundEnv: {
     158      186179 :             this->CalcBuriedPipeSoil(state);
     159      186179 :         } break;
     160      558537 :         default: {
     161      558537 :             this->CalcPipesHeatTransfer(state);
     162      558537 :         } break;
     163             :         }
     164      744716 :         this->PushInnerTimeStepArrays();
     165             :     }
     166             :     // update variables
     167       58100 :     this->UpdatePipesHeatTransfer(state);
     168             :     // update report variables
     169       58100 :     this->ReportPipesHeatTransfer(state);
     170       58100 : }
     171             : 
     172      744716 : void PipeHTData::PushInnerTimeStepArrays()
     173             : {
     174      744716 :     if (this->EnvironmentPtr == EnvrnPtr::GroundEnv) {
     175     3723580 :         for (int LengthIndex = 2; LengthIndex <= this->NumSections; ++LengthIndex) {
     176    31836609 :             for (int DepthIndex = 1; DepthIndex <= this->NumDepthNodes; ++DepthIndex) {
     177   113196832 :                 for (int WidthIndex = 2; WidthIndex <= this->PipeNodeWidth; ++WidthIndex) {
     178             :                     // This will store the old 'current' values as the new 'previous values'  This allows
     179             :                     // us to use the previous time array as history terms in the equations
     180    84897624 :                     this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Previous) =
     181    84897624 :                         this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Current);
     182             :                 }
     183             :             }
     184             :         }
     185             :     }
     186             :     // Then update the Hanby near pipe model temperatures
     187      744716 :     this->PreviousFluidTemp = this->FluidTemp;
     188      744716 :     this->PreviousPipeTemp = this->PipeTemp;
     189      744716 : }
     190             : 
     191           4 : void GetPipesHeatTransfer(EnergyPlusData &state)
     192             : {
     193             : 
     194             :     // SUBROUTINE INFORMATION:
     195             :     //       AUTHOR         Simon Rees
     196             :     //       DATE WRITTEN   July 2007
     197             :     //       MODIFIED       na
     198             :     //       RE-ENGINEERED  na
     199             :     // PURPOSE OF THIS SUBROUTINE:
     200             :     // This subroutine reads the input for hydronic Pipe Heat Transfers
     201             :     // from the user input file.  This will contain all of the information
     202             :     // needed to define and simulate the surface.
     203             : 
     204             :     // Using/Aliasing
     205             :     using BranchNodeConnections::TestCompSet;
     206             : 
     207             :     using NodeInputManager::GetOnlySingleNode;
     208             :     using namespace DataLoopNode;
     209             :     using OutAirNodeManager::CheckOutAirNodeNumber;
     210             :     using ScheduleManager::GetScheduleIndex;
     211             : 
     212             :     // SUBROUTINE PARAMETER DEFINITIONS:
     213           4 :     int constexpr NumPipeSections(20);
     214           4 :     int constexpr NumberOfDepthNodes(8); // Number of nodes in the cartesian grid-Should be an even # for now
     215           4 :     Real64 const SecondsInHour(Constant::SecInHour);
     216             : 
     217             :     // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
     218           4 :     bool ErrorsFound(false); // Set to true if errors in input,
     219             : 
     220             :     // fatal at end of routine
     221             :     int IOStatus; // Used in GetObjectItem
     222             :     int Item;     // Item to be "gotten"
     223             :     int PipeItem;
     224             :     int NumAlphas;      // Number of Alphas for each GetObjectItem call
     225             :     int NumNumbers;     // Number of Numbers for each GetObjectItem call
     226             :     int NumOfPipeHTInt; // Number of Pipe Heat Transfer objects
     227             :     int NumOfPipeHTExt; // Number of Pipe Heat Transfer objects
     228             :     int NumOfPipeHTUG;  // Number of Pipe Heat Transfer objects
     229             :     int NumSections;    // total number of sections in pipe
     230           4 :     auto &cCurrentModuleObject = state.dataIPShortCut->cCurrentModuleObject;
     231             :     // Initializations and allocations
     232           4 :     cCurrentModuleObject = "Pipe:Indoor";
     233           4 :     NumOfPipeHTInt = state.dataInputProcessing->inputProcessor->getNumObjectsFound(state, cCurrentModuleObject);
     234           4 :     cCurrentModuleObject = "Pipe:Outdoor";
     235           4 :     NumOfPipeHTExt = state.dataInputProcessing->inputProcessor->getNumObjectsFound(state, cCurrentModuleObject);
     236           4 :     cCurrentModuleObject = "Pipe:Underground";
     237           4 :     NumOfPipeHTUG = state.dataInputProcessing->inputProcessor->getNumObjectsFound(state, cCurrentModuleObject);
     238             : 
     239           4 :     state.dataPipeHT->nsvNumOfPipeHT = NumOfPipeHTInt + NumOfPipeHTExt + NumOfPipeHTUG;
     240             :     // allocate data structures
     241           4 :     if (allocated(state.dataPipeHT->PipeHT)) state.dataPipeHT->PipeHT.deallocate();
     242             : 
     243           4 :     state.dataPipeHT->PipeHT.allocate(state.dataPipeHT->nsvNumOfPipeHT);
     244           4 :     state.dataPipeHT->PipeHTUniqueNames.reserve(static_cast<unsigned>(state.dataPipeHT->nsvNumOfPipeHT));
     245           4 :     Item = 0;
     246             : 
     247           4 :     cCurrentModuleObject = "Pipe:Indoor";
     248           6 :     for (PipeItem = 1; PipeItem <= NumOfPipeHTInt; ++PipeItem) {
     249           2 :         ++Item;
     250             :         // get the object name
     251           4 :         state.dataInputProcessing->inputProcessor->getObjectItem(state,
     252             :                                                                  cCurrentModuleObject,
     253             :                                                                  PipeItem,
     254           2 :                                                                  state.dataIPShortCut->cAlphaArgs,
     255             :                                                                  NumAlphas,
     256           2 :                                                                  state.dataIPShortCut->rNumericArgs,
     257             :                                                                  NumNumbers,
     258             :                                                                  IOStatus,
     259           2 :                                                                  state.dataIPShortCut->lNumericFieldBlanks,
     260           2 :                                                                  state.dataIPShortCut->lAlphaFieldBlanks,
     261           2 :                                                                  state.dataIPShortCut->cAlphaFieldNames,
     262           2 :                                                                  state.dataIPShortCut->cNumericFieldNames);
     263             : 
     264           2 :         GlobalNames::VerifyUniqueInterObjectName(state,
     265           2 :                                                  state.dataPipeHT->PipeHTUniqueNames,
     266           2 :                                                  state.dataIPShortCut->cAlphaArgs(1),
     267             :                                                  cCurrentModuleObject,
     268           2 :                                                  state.dataIPShortCut->cAlphaFieldNames(1),
     269             :                                                  ErrorsFound);
     270           2 :         state.dataPipeHT->PipeHT(Item).Name = state.dataIPShortCut->cAlphaArgs(1);
     271           2 :         state.dataPipeHT->PipeHT(Item).Type = DataPlant::PlantEquipmentType::PipeInterior;
     272             : 
     273             :         // General user input data
     274           2 :         state.dataPipeHT->PipeHT(Item).Construction = state.dataIPShortCut->cAlphaArgs(2);
     275           2 :         state.dataPipeHT->PipeHT(Item).ConstructionNum = Util::FindItemInList(state.dataIPShortCut->cAlphaArgs(2), state.dataConstruction->Construct);
     276             : 
     277           2 :         if (state.dataPipeHT->PipeHT(Item).ConstructionNum == 0) {
     278           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(2), state.dataIPShortCut->cAlphaArgs(2)));
     279           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     280           0 :             ErrorsFound = true;
     281             :         }
     282             : 
     283             :         // get inlet node data
     284           2 :         state.dataPipeHT->PipeHT(Item).InletNode = state.dataIPShortCut->cAlphaArgs(3);
     285           4 :         state.dataPipeHT->PipeHT(Item).InletNodeNum = GetOnlySingleNode(state,
     286           2 :                                                                         state.dataIPShortCut->cAlphaArgs(3),
     287             :                                                                         ErrorsFound,
     288             :                                                                         DataLoopNode::ConnectionObjectType::PipeIndoor,
     289           2 :                                                                         state.dataIPShortCut->cAlphaArgs(1),
     290             :                                                                         DataLoopNode::NodeFluidType::Water,
     291             :                                                                         DataLoopNode::ConnectionType::Inlet,
     292             :                                                                         NodeInputManager::CompFluidStream::Primary,
     293             :                                                                         ObjectIsNotParent);
     294           2 :         if (state.dataPipeHT->PipeHT(Item).InletNodeNum == 0) {
     295           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(3), state.dataIPShortCut->cAlphaArgs(3)));
     296           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     297           0 :             ErrorsFound = true;
     298             :         }
     299             : 
     300             :         // get outlet node data
     301           2 :         state.dataPipeHT->PipeHT(Item).OutletNode = state.dataIPShortCut->cAlphaArgs(4);
     302           4 :         state.dataPipeHT->PipeHT(Item).OutletNodeNum = GetOnlySingleNode(state,
     303           2 :                                                                          state.dataIPShortCut->cAlphaArgs(4),
     304             :                                                                          ErrorsFound,
     305             :                                                                          DataLoopNode::ConnectionObjectType::PipeIndoor,
     306           2 :                                                                          state.dataIPShortCut->cAlphaArgs(1),
     307             :                                                                          DataLoopNode::NodeFluidType::Water,
     308             :                                                                          DataLoopNode::ConnectionType::Outlet,
     309             :                                                                          NodeInputManager::CompFluidStream::Primary,
     310             :                                                                          ObjectIsNotParent);
     311           2 :         if (state.dataPipeHT->PipeHT(Item).OutletNodeNum == 0) {
     312           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(4), state.dataIPShortCut->cAlphaArgs(4)));
     313           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     314           0 :             ErrorsFound = true;
     315             :         }
     316             : 
     317           4 :         TestCompSet(state,
     318             :                     cCurrentModuleObject,
     319           2 :                     state.dataIPShortCut->cAlphaArgs(1),
     320           2 :                     state.dataIPShortCut->cAlphaArgs(3),
     321           2 :                     state.dataIPShortCut->cAlphaArgs(4),
     322             :                     "Pipe Nodes");
     323             : 
     324             :         // get environmental boundary condition type
     325             : 
     326           2 :         if (state.dataIPShortCut->lAlphaFieldBlanks(5)) state.dataIPShortCut->cAlphaArgs(5) = "ZONE";
     327             : 
     328             :         PipeIndoorBoundaryType indoorType =
     329           2 :             static_cast<PipeIndoorBoundaryType>(getEnumValue(pipeIndoorBoundaryTypeNamesUC, state.dataIPShortCut->cAlphaArgs(5)));
     330           2 :         switch (indoorType) {
     331           1 :         case PipeIndoorBoundaryType::Zone:
     332           1 :             state.dataPipeHT->PipeHT(Item).EnvironmentPtr = EnvrnPtr::ZoneEnv;
     333           1 :             state.dataPipeHT->PipeHT(Item).EnvrZonePtr = Util::FindItemInList(state.dataIPShortCut->cAlphaArgs(6), state.dataHeatBal->Zone);
     334           1 :             if (state.dataPipeHT->PipeHT(Item).EnvrZonePtr == 0) {
     335           0 :                 ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(6), state.dataIPShortCut->cAlphaArgs(6)));
     336           0 :                 ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     337           0 :                 ErrorsFound = true;
     338             :             }
     339           1 :             break;
     340             : 
     341           1 :         case PipeIndoorBoundaryType::Schedule:
     342           1 :             state.dataPipeHT->PipeHT(Item).EnvironmentPtr = EnvrnPtr::ScheduleEnv;
     343           1 :             state.dataPipeHT->PipeHT(Item).EnvrSchedule = state.dataIPShortCut->cAlphaArgs(7);
     344           1 :             state.dataPipeHT->PipeHT(Item).EnvrSchedPtr = GetScheduleIndex(state, state.dataPipeHT->PipeHT(Item).EnvrSchedule);
     345           1 :             state.dataPipeHT->PipeHT(Item).EnvrVelSchedule = state.dataIPShortCut->cAlphaArgs(8);
     346           1 :             state.dataPipeHT->PipeHT(Item).EnvrVelSchedPtr = GetScheduleIndex(state, state.dataPipeHT->PipeHT(Item).EnvrVelSchedule);
     347           1 :             if (state.dataPipeHT->PipeHT(Item).EnvrSchedPtr == 0) {
     348           0 :                 ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(7), state.dataIPShortCut->cAlphaArgs(7)));
     349           0 :                 ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     350           0 :                 ErrorsFound = true;
     351             :             }
     352           1 :             if (state.dataPipeHT->PipeHT(Item).EnvrVelSchedPtr == 0) {
     353           0 :                 ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(8), state.dataIPShortCut->cAlphaArgs(8)));
     354           0 :                 ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     355           0 :                 ErrorsFound = true;
     356             :             }
     357           1 :             break;
     358             : 
     359           0 :         default:
     360           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(5), state.dataIPShortCut->cAlphaArgs(5)));
     361           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     362           0 :             ShowContinueError(state, R"(Should be "ZONE" or "SCHEDULE")"); // TODO rename point
     363           0 :             ErrorsFound = true;
     364             :         }
     365             : 
     366             :         // dimensions
     367           2 :         state.dataPipeHT->PipeHT(Item).PipeID = state.dataIPShortCut->rNumericArgs(1);
     368           2 :         if (state.dataIPShortCut->rNumericArgs(1) <= 0.0) { // not really necessary because idd field has "minimum> 0"
     369           0 :             ShowSevereError(state,
     370           0 :                             format("GetPipesHeatTransfer: invalid {} of {:.4R}",
     371           0 :                                    state.dataIPShortCut->cNumericFieldNames(1),
     372           0 :                                    state.dataIPShortCut->rNumericArgs(1)));
     373           0 :             ShowContinueError(state, format("{} must be > 0.0", state.dataIPShortCut->cNumericFieldNames(1)));
     374           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     375             : 
     376           0 :             ErrorsFound = true;
     377             :         }
     378             : 
     379           2 :         state.dataPipeHT->PipeHT(Item).Length = state.dataIPShortCut->rNumericArgs(2);
     380           2 :         if (state.dataIPShortCut->rNumericArgs(2) <= 0.0) { // not really necessary because idd field has "minimum> 0"
     381           0 :             ShowSevereError(state,
     382           0 :                             format("GetPipesHeatTransfer: invalid {} of {:.4R}",
     383           0 :                                    state.dataIPShortCut->cNumericFieldNames(2),
     384           0 :                                    state.dataIPShortCut->rNumericArgs(2)));
     385           0 :             ShowContinueError(state, format("{} must be > 0.0", state.dataIPShortCut->cNumericFieldNames(2)));
     386           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     387           0 :             ErrorsFound = true;
     388             :         }
     389             : 
     390           2 :         if (state.dataPipeHT->PipeHT(Item).ConstructionNum != 0) {
     391           2 :             state.dataPipeHT->PipeHT(Item).ValidatePipeConstruction(state,
     392             :                                                                     cCurrentModuleObject,
     393           2 :                                                                     state.dataIPShortCut->cAlphaArgs(2),
     394           2 :                                                                     state.dataIPShortCut->cAlphaFieldNames(2),
     395           2 :                                                                     state.dataPipeHT->PipeHT(Item).ConstructionNum,
     396             :                                                                     ErrorsFound);
     397             :         }
     398             : 
     399             :     } // end of input loop
     400             : 
     401           4 :     cCurrentModuleObject = "Pipe:Outdoor";
     402           5 :     for (PipeItem = 1; PipeItem <= NumOfPipeHTExt; ++PipeItem) {
     403           1 :         ++Item;
     404             :         // get the object name
     405           2 :         state.dataInputProcessing->inputProcessor->getObjectItem(state,
     406             :                                                                  cCurrentModuleObject,
     407             :                                                                  PipeItem,
     408           1 :                                                                  state.dataIPShortCut->cAlphaArgs,
     409             :                                                                  NumAlphas,
     410           1 :                                                                  state.dataIPShortCut->rNumericArgs,
     411             :                                                                  NumNumbers,
     412             :                                                                  IOStatus,
     413           1 :                                                                  state.dataIPShortCut->lNumericFieldBlanks,
     414           1 :                                                                  state.dataIPShortCut->lAlphaFieldBlanks,
     415           1 :                                                                  state.dataIPShortCut->cAlphaFieldNames,
     416           1 :                                                                  state.dataIPShortCut->cNumericFieldNames);
     417             : 
     418           1 :         GlobalNames::VerifyUniqueInterObjectName(state,
     419           1 :                                                  state.dataPipeHT->PipeHTUniqueNames,
     420           1 :                                                  state.dataIPShortCut->cAlphaArgs(1),
     421             :                                                  cCurrentModuleObject,
     422           1 :                                                  state.dataIPShortCut->cAlphaFieldNames(1),
     423             :                                                  ErrorsFound);
     424           1 :         state.dataPipeHT->PipeHT(Item).Name = state.dataIPShortCut->cAlphaArgs(1);
     425           1 :         state.dataPipeHT->PipeHT(Item).Type = DataPlant::PlantEquipmentType::PipeExterior;
     426             : 
     427             :         // General user input data
     428           1 :         state.dataPipeHT->PipeHT(Item).Construction = state.dataIPShortCut->cAlphaArgs(2);
     429           1 :         state.dataPipeHT->PipeHT(Item).ConstructionNum = Util::FindItemInList(state.dataIPShortCut->cAlphaArgs(2), state.dataConstruction->Construct);
     430             : 
     431           1 :         if (state.dataPipeHT->PipeHT(Item).ConstructionNum == 0) {
     432           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(2), state.dataIPShortCut->cAlphaArgs(2)));
     433           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     434           0 :             ErrorsFound = true;
     435             :         }
     436             : 
     437             :         // get inlet node data
     438           1 :         state.dataPipeHT->PipeHT(Item).InletNode = state.dataIPShortCut->cAlphaArgs(3);
     439           2 :         state.dataPipeHT->PipeHT(Item).InletNodeNum = GetOnlySingleNode(state,
     440           1 :                                                                         state.dataIPShortCut->cAlphaArgs(3),
     441             :                                                                         ErrorsFound,
     442             :                                                                         DataLoopNode::ConnectionObjectType::PipeOutdoor,
     443           1 :                                                                         state.dataIPShortCut->cAlphaArgs(1),
     444             :                                                                         DataLoopNode::NodeFluidType::Water,
     445             :                                                                         DataLoopNode::ConnectionType::Inlet,
     446             :                                                                         NodeInputManager::CompFluidStream::Primary,
     447             :                                                                         ObjectIsNotParent);
     448           1 :         if (state.dataPipeHT->PipeHT(Item).InletNodeNum == 0) {
     449           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(3), state.dataIPShortCut->cAlphaArgs(3)));
     450           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     451           0 :             ErrorsFound = true;
     452             :         }
     453             : 
     454             :         // get outlet node data
     455           1 :         state.dataPipeHT->PipeHT(Item).OutletNode = state.dataIPShortCut->cAlphaArgs(4);
     456           2 :         state.dataPipeHT->PipeHT(Item).OutletNodeNum = GetOnlySingleNode(state,
     457           1 :                                                                          state.dataIPShortCut->cAlphaArgs(4),
     458             :                                                                          ErrorsFound,
     459             :                                                                          DataLoopNode::ConnectionObjectType::PipeOutdoor,
     460           1 :                                                                          state.dataIPShortCut->cAlphaArgs(1),
     461             :                                                                          DataLoopNode::NodeFluidType::Water,
     462             :                                                                          DataLoopNode::ConnectionType::Outlet,
     463             :                                                                          NodeInputManager::CompFluidStream::Primary,
     464             :                                                                          ObjectIsNotParent);
     465           1 :         if (state.dataPipeHT->PipeHT(Item).OutletNodeNum == 0) {
     466           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(4), state.dataIPShortCut->cAlphaArgs(4)));
     467           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     468           0 :             ErrorsFound = true;
     469             :         }
     470             : 
     471           2 :         TestCompSet(state,
     472             :                     cCurrentModuleObject,
     473           1 :                     state.dataIPShortCut->cAlphaArgs(1),
     474           1 :                     state.dataIPShortCut->cAlphaArgs(3),
     475           1 :                     state.dataIPShortCut->cAlphaArgs(4),
     476             :                     "Pipe Nodes");
     477             : 
     478             :         // get environmental boundary condition type
     479             :         //    PipeHT(Item)%Environment = 'OutdoorAir'
     480           1 :         state.dataPipeHT->PipeHT(Item).EnvironmentPtr = EnvrnPtr::OutsideAirEnv;
     481             : 
     482           1 :         state.dataPipeHT->PipeHT(Item).EnvrAirNode = state.dataIPShortCut->cAlphaArgs(5);
     483           2 :         state.dataPipeHT->PipeHT(Item).EnvrAirNodeNum = GetOnlySingleNode(state,
     484           1 :                                                                           state.dataIPShortCut->cAlphaArgs(5),
     485             :                                                                           ErrorsFound,
     486             :                                                                           DataLoopNode::ConnectionObjectType::PipeOutdoor,
     487           1 :                                                                           state.dataIPShortCut->cAlphaArgs(1),
     488             :                                                                           DataLoopNode::NodeFluidType::Air,
     489             :                                                                           DataLoopNode::ConnectionType::OutsideAirReference,
     490             :                                                                           NodeInputManager::CompFluidStream::Primary,
     491             :                                                                           ObjectIsNotParent);
     492           1 :         if (!state.dataIPShortCut->lAlphaFieldBlanks(5)) {
     493           1 :             if (!CheckOutAirNodeNumber(state, state.dataPipeHT->PipeHT(Item).EnvrAirNodeNum)) {
     494           0 :                 ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(5), state.dataIPShortCut->cAlphaArgs(5)));
     495           0 :                 ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     496           0 :                 ShowContinueError(state, "Outdoor Air Node not on OutdoorAir:NodeList or OutdoorAir:Node");
     497           0 :                 ErrorsFound = true;
     498             :             }
     499             :         } else {
     500           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(5), state.dataIPShortCut->cAlphaArgs(5)));
     501           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     502           0 :             ShowContinueError(state, format("An {} must be used ", state.dataIPShortCut->cAlphaFieldNames(5)));
     503           0 :             ErrorsFound = true;
     504             :         }
     505             : 
     506             :         // dimensions
     507           1 :         state.dataPipeHT->PipeHT(Item).PipeID = state.dataIPShortCut->rNumericArgs(1);
     508           1 :         if (state.dataIPShortCut->rNumericArgs(1) <= 0.0) { // not really necessary because idd field has "minimum> 0"
     509           0 :             ShowSevereError(state,
     510           0 :                             format("Invalid {} of {:.4R}", state.dataIPShortCut->cNumericFieldNames(1), state.dataIPShortCut->rNumericArgs(1)));
     511           0 :             ShowContinueError(state, format("{} must be > 0.0", state.dataIPShortCut->cNumericFieldNames(1)));
     512           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     513           0 :             ErrorsFound = true;
     514             :         }
     515             : 
     516           1 :         state.dataPipeHT->PipeHT(Item).Length = state.dataIPShortCut->rNumericArgs(2);
     517           1 :         if (state.dataIPShortCut->rNumericArgs(2) <= 0.0) { // not really necessary because idd field has "minimum> 0"
     518           0 :             ShowSevereError(state,
     519           0 :                             format("Invalid {} of {:.4R}", state.dataIPShortCut->cNumericFieldNames(2), state.dataIPShortCut->rNumericArgs(2)));
     520           0 :             ShowContinueError(state, format("{} must be > 0.0", state.dataIPShortCut->cNumericFieldNames(2)));
     521           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     522           0 :             ErrorsFound = true;
     523             :         }
     524             : 
     525           1 :         if (state.dataPipeHT->PipeHT(Item).ConstructionNum != 0) {
     526           1 :             state.dataPipeHT->PipeHT(Item).ValidatePipeConstruction(state,
     527             :                                                                     cCurrentModuleObject,
     528           1 :                                                                     state.dataIPShortCut->cAlphaArgs(2),
     529           1 :                                                                     state.dataIPShortCut->cAlphaFieldNames(2),
     530           1 :                                                                     state.dataPipeHT->PipeHT(Item).ConstructionNum,
     531             :                                                                     ErrorsFound);
     532             :         }
     533             : 
     534             :     } // end of input loop
     535             : 
     536           4 :     cCurrentModuleObject = "Pipe:Underground";
     537           5 :     for (PipeItem = 1; PipeItem <= NumOfPipeHTUG; ++PipeItem) {
     538             : 
     539           1 :         ++Item;
     540             :         // get the object name
     541           2 :         state.dataInputProcessing->inputProcessor->getObjectItem(state,
     542             :                                                                  cCurrentModuleObject,
     543             :                                                                  PipeItem,
     544           1 :                                                                  state.dataIPShortCut->cAlphaArgs,
     545             :                                                                  NumAlphas,
     546           1 :                                                                  state.dataIPShortCut->rNumericArgs,
     547             :                                                                  NumNumbers,
     548             :                                                                  IOStatus,
     549           1 :                                                                  state.dataIPShortCut->lNumericFieldBlanks,
     550           1 :                                                                  state.dataIPShortCut->lAlphaFieldBlanks,
     551           1 :                                                                  state.dataIPShortCut->cAlphaFieldNames,
     552           1 :                                                                  state.dataIPShortCut->cNumericFieldNames);
     553             : 
     554           1 :         GlobalNames::VerifyUniqueInterObjectName(state,
     555           1 :                                                  state.dataPipeHT->PipeHTUniqueNames,
     556           1 :                                                  state.dataIPShortCut->cAlphaArgs(1),
     557             :                                                  cCurrentModuleObject,
     558           1 :                                                  state.dataIPShortCut->cAlphaFieldNames(1),
     559             :                                                  ErrorsFound);
     560           1 :         state.dataPipeHT->PipeHT(Item).Name = state.dataIPShortCut->cAlphaArgs(1);
     561           1 :         state.dataPipeHT->PipeHT(Item).Type = DataPlant::PlantEquipmentType::PipeUnderground;
     562             : 
     563             :         // General user input data
     564           1 :         state.dataPipeHT->PipeHT(Item).Construction = state.dataIPShortCut->cAlphaArgs(2);
     565           1 :         state.dataPipeHT->PipeHT(Item).ConstructionNum = Util::FindItemInList(state.dataIPShortCut->cAlphaArgs(2), state.dataConstruction->Construct);
     566             : 
     567           1 :         if (state.dataPipeHT->PipeHT(Item).ConstructionNum == 0) {
     568           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(2), state.dataIPShortCut->cAlphaArgs(2)));
     569           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     570           0 :             ErrorsFound = true;
     571             :         }
     572             : 
     573             :         // get inlet node data
     574           1 :         state.dataPipeHT->PipeHT(Item).InletNode = state.dataIPShortCut->cAlphaArgs(3);
     575           2 :         state.dataPipeHT->PipeHT(Item).InletNodeNum = GetOnlySingleNode(state,
     576           1 :                                                                         state.dataIPShortCut->cAlphaArgs(3),
     577             :                                                                         ErrorsFound,
     578             :                                                                         DataLoopNode::ConnectionObjectType::PipeUnderground,
     579           1 :                                                                         state.dataIPShortCut->cAlphaArgs(1),
     580             :                                                                         DataLoopNode::NodeFluidType::Water,
     581             :                                                                         DataLoopNode::ConnectionType::Inlet,
     582             :                                                                         NodeInputManager::CompFluidStream::Primary,
     583             :                                                                         ObjectIsNotParent);
     584           1 :         if (state.dataPipeHT->PipeHT(Item).InletNodeNum == 0) {
     585           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(3), state.dataIPShortCut->cAlphaArgs(3)));
     586           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     587           0 :             ErrorsFound = true;
     588             :         }
     589             : 
     590             :         // get outlet node data
     591           1 :         state.dataPipeHT->PipeHT(Item).OutletNode = state.dataIPShortCut->cAlphaArgs(4);
     592           2 :         state.dataPipeHT->PipeHT(Item).OutletNodeNum = GetOnlySingleNode(state,
     593           1 :                                                                          state.dataIPShortCut->cAlphaArgs(4),
     594             :                                                                          ErrorsFound,
     595             :                                                                          DataLoopNode::ConnectionObjectType::PipeUnderground,
     596           1 :                                                                          state.dataIPShortCut->cAlphaArgs(1),
     597             :                                                                          DataLoopNode::NodeFluidType::Water,
     598             :                                                                          DataLoopNode::ConnectionType::Outlet,
     599             :                                                                          NodeInputManager::CompFluidStream::Primary,
     600             :                                                                          ObjectIsNotParent);
     601           1 :         if (state.dataPipeHT->PipeHT(Item).OutletNodeNum == 0) {
     602           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(4), state.dataIPShortCut->cAlphaArgs(4)));
     603           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     604           0 :             ErrorsFound = true;
     605             :         }
     606             : 
     607           2 :         TestCompSet(state,
     608             :                     cCurrentModuleObject,
     609           1 :                     state.dataIPShortCut->cAlphaArgs(1),
     610           1 :                     state.dataIPShortCut->cAlphaArgs(3),
     611           1 :                     state.dataIPShortCut->cAlphaArgs(4),
     612             :                     "Pipe Nodes");
     613             : 
     614           1 :         state.dataPipeHT->PipeHT(Item).EnvironmentPtr = EnvrnPtr::GroundEnv;
     615             : 
     616             :         // Solar inclusion flag
     617             :         // A6,  \field Sun Exposure
     618           1 :         if (Util::SameString(state.dataIPShortCut->cAlphaArgs(5), "SUNEXPOSED")) {
     619           1 :             state.dataPipeHT->PipeHT(Item).SolarExposed = true;
     620           0 :         } else if (Util::SameString(state.dataIPShortCut->cAlphaArgs(5), "NOSUN")) {
     621           0 :             state.dataPipeHT->PipeHT(Item).SolarExposed = false;
     622             :         } else {
     623           0 :             ShowSevereError(state, format("GetPipesHeatTransfer: invalid key for sun exposure flag for {}", state.dataIPShortCut->cAlphaArgs(1)));
     624           0 :             ShowContinueError(state, format("Key should be either SunExposed or NoSun.  Entered Key: {}", state.dataIPShortCut->cAlphaArgs(5)));
     625           0 :             ErrorsFound = true;
     626             :         }
     627             : 
     628             :         // dimensions
     629           1 :         state.dataPipeHT->PipeHT(Item).PipeID = state.dataIPShortCut->rNumericArgs(1);
     630           1 :         if (state.dataIPShortCut->rNumericArgs(1) <= 0.0) { // not really necessary because idd field has "minimum> 0"
     631           0 :             ShowSevereError(state,
     632           0 :                             format("Invalid {} of {:.4R}", state.dataIPShortCut->cNumericFieldNames(1), state.dataIPShortCut->rNumericArgs(1)));
     633           0 :             ShowContinueError(state, format("{} must be > 0.0", state.dataIPShortCut->cNumericFieldNames(1)));
     634           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     635           0 :             ErrorsFound = true;
     636             :         }
     637             : 
     638           1 :         state.dataPipeHT->PipeHT(Item).Length = state.dataIPShortCut->rNumericArgs(2);
     639           1 :         if (state.dataIPShortCut->rNumericArgs(2) <= 0.0) { // not really necessary because idd field has "minimum> 0"
     640           0 :             ShowSevereError(state,
     641           0 :                             format("Invalid {} of {:.4R}", state.dataIPShortCut->cNumericFieldNames(2), state.dataIPShortCut->rNumericArgs(2)));
     642           0 :             ShowContinueError(state, format("{} must be > 0.0", state.dataIPShortCut->cNumericFieldNames(2)));
     643           0 :             ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
     644           0 :             ErrorsFound = true;
     645             :         }
     646             : 
     647             :         // Also get the soil material name
     648             :         // A7,  \field Soil Material
     649           1 :         state.dataPipeHT->PipeHT(Item).SoilMaterial = state.dataIPShortCut->cAlphaArgs(6);
     650           1 :         state.dataPipeHT->PipeHT(Item).SoilMaterialNum = Util::FindItemInPtrList(state.dataIPShortCut->cAlphaArgs(6), state.dataMaterial->Material);
     651           1 :         if (state.dataPipeHT->PipeHT(Item).SoilMaterialNum == 0) {
     652           0 :             ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(6), state.dataPipeHT->PipeHT(Item).SoilMaterial));
     653           0 :             ShowContinueError(state, format("Found in {}={}", cCurrentModuleObject, state.dataPipeHT->PipeHT(Item).Name));
     654           0 :             ErrorsFound = true;
     655             :         } else {
     656             :             auto const *thisMaterialSoil =
     657           1 :                 dynamic_cast<const Material::MaterialChild *>(state.dataMaterial->Material(state.dataPipeHT->PipeHT(Item).SoilMaterialNum));
     658           1 :             assert(thisMaterialSoil != nullptr);
     659           1 :             state.dataPipeHT->PipeHT(Item).SoilDensity = thisMaterialSoil->Density;
     660           1 :             state.dataPipeHT->PipeHT(Item).SoilDepth = thisMaterialSoil->Thickness;
     661           1 :             state.dataPipeHT->PipeHT(Item).SoilCp = thisMaterialSoil->SpecHeat;
     662           1 :             state.dataPipeHT->PipeHT(Item).SoilConductivity = thisMaterialSoil->Conductivity;
     663           1 :             state.dataPipeHT->PipeHT(Item).SoilThermAbs = thisMaterialSoil->AbsorpThermal;
     664           1 :             state.dataPipeHT->PipeHT(Item).SoilSolarAbs = thisMaterialSoil->AbsorpSolar;
     665           1 :             state.dataPipeHT->PipeHT(Item).SoilRoughness = thisMaterialSoil->Roughness;
     666           1 :             state.dataPipeHT->PipeHT(Item).PipeDepth = state.dataPipeHT->PipeHT(Item).SoilDepth + state.dataPipeHT->PipeHT(Item).PipeID / 2.0;
     667           1 :             state.dataPipeHT->PipeHT(Item).DomainDepth = state.dataPipeHT->PipeHT(Item).PipeDepth * 2.0;
     668           2 :             state.dataPipeHT->PipeHT(Item).SoilDiffusivity = state.dataPipeHT->PipeHT(Item).SoilConductivity /
     669           1 :                                                              (state.dataPipeHT->PipeHT(Item).SoilDensity * state.dataPipeHT->PipeHT(Item).SoilCp);
     670           1 :             state.dataPipeHT->PipeHT(Item).SoilDiffusivityPerDay =
     671           1 :                 state.dataPipeHT->PipeHT(Item).SoilDiffusivity * SecondsInHour * Constant::HoursInDay;
     672             : 
     673             :             // Mesh the cartesian domain
     674           1 :             state.dataPipeHT->PipeHT(Item).NumDepthNodes = NumberOfDepthNodes;
     675           1 :             state.dataPipeHT->PipeHT(Item).PipeNodeDepth = state.dataPipeHT->PipeHT(Item).NumDepthNodes / 2;
     676           1 :             state.dataPipeHT->PipeHT(Item).PipeNodeWidth = state.dataPipeHT->PipeHT(Item).NumDepthNodes / 2;
     677           1 :             state.dataPipeHT->PipeHT(Item).DomainDepth = state.dataPipeHT->PipeHT(Item).PipeDepth * 2.0;
     678           1 :             state.dataPipeHT->PipeHT(Item).dSregular =
     679           1 :                 state.dataPipeHT->PipeHT(Item).DomainDepth / (state.dataPipeHT->PipeHT(Item).NumDepthNodes - 1);
     680             :         }
     681             : 
     682           1 :         if (state.dataPipeHT->PipeHT(Item).ConstructionNum != 0) {
     683           1 :             state.dataPipeHT->PipeHT(Item).ValidatePipeConstruction(state,
     684             :                                                                     cCurrentModuleObject,
     685           1 :                                                                     state.dataIPShortCut->cAlphaArgs(2),
     686           1 :                                                                     state.dataIPShortCut->cAlphaFieldNames(2),
     687           1 :                                                                     state.dataPipeHT->PipeHT(Item).ConstructionNum,
     688             :                                                                     ErrorsFound);
     689             :         }
     690             : 
     691             :         // Get ground temperature model
     692           1 :         state.dataPipeHT->PipeHT(Item).groundTempModel =
     693           2 :             GetGroundTempModelAndInit(state, state.dataIPShortCut->cAlphaArgs(7), state.dataIPShortCut->cAlphaArgs(8));
     694             : 
     695             :         // Select number of pipe sections.  Hanby's optimal number of 20 section is selected.
     696           1 :         NumSections = NumPipeSections;
     697           1 :         state.dataPipeHT->PipeHT(Item).NumSections = NumPipeSections;
     698             : 
     699             :         // For buried pipes, we need to allocate the cartesian finite difference array
     700           2 :         state.dataPipeHT->PipeHT(Item).T.allocate(state.dataPipeHT->PipeHT(Item).PipeNodeWidth,
     701           1 :                                                   state.dataPipeHT->PipeHT(Item).NumDepthNodes,
     702           1 :                                                   state.dataPipeHT->PipeHT(Item).NumSections,
     703             :                                                   TimeIndex::Tentative);
     704           1 :         state.dataPipeHT->PipeHT(Item).T = 0.0;
     705             : 
     706             :     } // PipeUG input loop
     707             : 
     708           8 :     for (Item = 1; Item <= state.dataPipeHT->nsvNumOfPipeHT; ++Item) {
     709             :         // Select number of pipe sections.  Hanby's optimal number of 20 section is selected.
     710           4 :         NumSections = NumPipeSections;
     711           4 :         state.dataPipeHT->PipeHT(Item).NumSections = NumPipeSections;
     712             : 
     713             :         // We need to allocate the Hanby model arrays for all pipes, including buried
     714           4 :         state.dataPipeHT->PipeHT(Item).TentativeFluidTemp.allocate({0, NumSections});
     715           4 :         state.dataPipeHT->PipeHT(Item).TentativePipeTemp.allocate({0, NumSections});
     716           4 :         state.dataPipeHT->PipeHT(Item).FluidTemp.allocate({0, NumSections});
     717           4 :         state.dataPipeHT->PipeHT(Item).PreviousFluidTemp.allocate({0, NumSections});
     718           4 :         state.dataPipeHT->PipeHT(Item).PipeTemp.allocate({0, NumSections});
     719           4 :         state.dataPipeHT->PipeHT(Item).PreviousPipeTemp.allocate({0, NumSections});
     720             : 
     721           4 :         state.dataPipeHT->PipeHT(Item).TentativeFluidTemp = 0.0;
     722           4 :         state.dataPipeHT->PipeHT(Item).FluidTemp = 0.0;
     723           4 :         state.dataPipeHT->PipeHT(Item).PreviousFluidTemp = 0.0;
     724           4 :         state.dataPipeHT->PipeHT(Item).TentativePipeTemp = 0.0;
     725           4 :         state.dataPipeHT->PipeHT(Item).PipeTemp = 0.0;
     726           4 :         state.dataPipeHT->PipeHT(Item).PreviousPipeTemp = 0.0;
     727             : 
     728             :         // work out heat transfer areas (area per section)
     729           4 :         state.dataPipeHT->PipeHT(Item).InsideArea =
     730           4 :             Constant::Pi * state.dataPipeHT->PipeHT(Item).PipeID * state.dataPipeHT->PipeHT(Item).Length / NumSections;
     731           4 :         state.dataPipeHT->PipeHT(Item).OutsideArea =
     732           4 :             Constant::Pi * (state.dataPipeHT->PipeHT(Item).PipeOD + 2 * state.dataPipeHT->PipeHT(Item).InsulationThickness) *
     733           4 :             state.dataPipeHT->PipeHT(Item).Length / NumSections;
     734             : 
     735             :         // cross sectional area
     736           4 :         state.dataPipeHT->PipeHT(Item).SectionArea = Constant::Pi * 0.25 * pow_2(state.dataPipeHT->PipeHT(Item).PipeID);
     737             : 
     738             :         // pipe & insulation mass
     739           4 :         state.dataPipeHT->PipeHT(Item).PipeHeatCapacity =
     740           4 :             state.dataPipeHT->PipeHT(Item).PipeCp * state.dataPipeHT->PipeHT(Item).PipeDensity *
     741           4 :             (Constant::Pi * 0.25 * pow_2(state.dataPipeHT->PipeHT(Item).PipeOD) - state.dataPipeHT->PipeHT(Item).SectionArea); // the metal component
     742             :     }
     743             : 
     744             :     // final error check
     745           4 :     if (ErrorsFound) {
     746           0 :         ShowFatalError(state, "GetPipesHeatTransfer: Errors found in input. Preceding conditions cause termination.");
     747             :     }
     748             : 
     749             :     // Set up the output variables CurrentModuleObject='Pipe:Indoor/Outdoor/Underground'
     750           8 :     for (Item = 1; Item <= state.dataPipeHT->nsvNumOfPipeHT; ++Item) {
     751             : 
     752           8 :         SetupOutputVariable(state,
     753             :                             "Pipe Fluid Heat Transfer Rate",
     754             :                             Constant::Units::W,
     755           4 :                             state.dataPipeHT->PipeHT(Item).FluidHeatLossRate,
     756             :                             OutputProcessor::TimeStepType::System,
     757             :                             OutputProcessor::StoreType::Average,
     758           4 :                             state.dataPipeHT->PipeHT(Item).Name);
     759           8 :         SetupOutputVariable(state,
     760             :                             "Pipe Fluid Heat Transfer Energy",
     761             :                             Constant::Units::J,
     762           4 :                             state.dataPipeHT->PipeHT(Item).FluidHeatLossEnergy,
     763             :                             OutputProcessor::TimeStepType::System,
     764             :                             OutputProcessor::StoreType::Sum,
     765           4 :                             state.dataPipeHT->PipeHT(Item).Name);
     766             : 
     767           4 :         if (state.dataPipeHT->PipeHT(Item).EnvironmentPtr == EnvrnPtr::ZoneEnv) {
     768           2 :             SetupOutputVariable(state,
     769             :                                 "Pipe Ambient Heat Transfer Rate",
     770             :                                 Constant::Units::W,
     771           1 :                                 state.dataPipeHT->PipeHT(Item).EnvironmentHeatLossRate,
     772             :                                 OutputProcessor::TimeStepType::System,
     773             :                                 OutputProcessor::StoreType::Average,
     774           1 :                                 state.dataPipeHT->PipeHT(Item).Name);
     775           2 :             SetupOutputVariable(state,
     776             :                                 "Pipe Ambient Heat Transfer Energy",
     777             :                                 Constant::Units::J,
     778           1 :                                 state.dataPipeHT->PipeHT(Item).EnvHeatLossEnergy,
     779             :                                 OutputProcessor::TimeStepType::System,
     780             :                                 OutputProcessor::StoreType::Sum,
     781           1 :                                 state.dataPipeHT->PipeHT(Item).Name);
     782             : 
     783           3 :             SetupZoneInternalGain(state,
     784           1 :                                   state.dataPipeHT->PipeHT(Item).EnvrZonePtr,
     785           1 :                                   state.dataPipeHT->PipeHT(Item).Name,
     786             :                                   DataHeatBalance::IntGainType::PipeIndoor,
     787           1 :                                   &state.dataPipeHT->PipeHT(Item).ZoneHeatGainRate);
     788             :         }
     789             : 
     790           8 :         SetupOutputVariable(state,
     791             :                             "Pipe Mass Flow Rate",
     792             :                             Constant::Units::kg_s,
     793           4 :                             state.dataPipeHT->PipeHT(Item).MassFlowRate,
     794             :                             OutputProcessor::TimeStepType::System,
     795             :                             OutputProcessor::StoreType::Average,
     796           4 :                             state.dataPipeHT->PipeHT(Item).Name);
     797           8 :         SetupOutputVariable(state,
     798             :                             "Pipe Volume Flow Rate",
     799             :                             Constant::Units::m3_s,
     800           4 :                             state.dataPipeHT->PipeHT(Item).VolumeFlowRate,
     801             :                             OutputProcessor::TimeStepType::System,
     802             :                             OutputProcessor::StoreType::Average,
     803           4 :                             state.dataPipeHT->PipeHT(Item).Name);
     804           8 :         SetupOutputVariable(state,
     805             :                             "Pipe Inlet Temperature",
     806             :                             Constant::Units::C,
     807           4 :                             state.dataPipeHT->PipeHT(Item).FluidInletTemp,
     808             :                             OutputProcessor::TimeStepType::System,
     809             :                             OutputProcessor::StoreType::Average,
     810           4 :                             state.dataPipeHT->PipeHT(Item).Name);
     811           8 :         SetupOutputVariable(state,
     812             :                             "Pipe Outlet Temperature",
     813             :                             Constant::Units::C,
     814           4 :                             state.dataPipeHT->PipeHT(Item).FluidOutletTemp,
     815             :                             OutputProcessor::TimeStepType::System,
     816             :                             OutputProcessor::StoreType::Average,
     817           4 :                             state.dataPipeHT->PipeHT(Item).Name);
     818             :     }
     819           4 : }
     820             : 
     821           4 : void PipeHTData::ValidatePipeConstruction(EnergyPlusData &state,
     822             :                                           std::string const &PipeType,         // module object of pipe (error messages)
     823             :                                           std::string const &ConstructionName, // construction name of pipe (error messages)
     824             :                                           std::string_view FieldName,          // fieldname of pipe (error messages)
     825             :                                           int const ConstructionNum,           // pointer into construction data
     826             :                                           bool &ErrorsFound                    // set to true if errors found here
     827             : )
     828             : {
     829             : 
     830             :     // SUBROUTINE INFORMATION:
     831             :     //       AUTHOR         Linda Lawrie
     832             :     //       DATE WRITTEN   August 2008
     833             :     //       MODIFIED       na
     834             :     //       RE-ENGINEERED  na
     835             : 
     836             :     // PURPOSE OF THIS SUBROUTINE:
     837             :     // This routine, called from GetInput, validates the pipe construction usage.
     838             : 
     839             :     // METHODOLOGY EMPLOYED:
     840             :     // na
     841             : 
     842             :     // REFERENCES:
     843             :     // na
     844             : 
     845             :     // Using/Aliasing
     846             : 
     847             :     // Locals
     848             :     // SUBROUTINE ARGUMENT DEFINITIONS:
     849             : 
     850             :     // SUBROUTINE PARAMETER DEFINITIONS:
     851             :     // na
     852             : 
     853             :     // INTERFACE BLOCK SPECIFICATIONS:
     854             :     // na
     855             : 
     856             :     // DERIVED TYPE DEFINITIONS:
     857             :     // na
     858             : 
     859             :     // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
     860             :     Real64 Density; // average density [kg/m^3]
     861             :     Real64 SpHeat;  // average specific heat [J/kg.K]
     862           4 :     Real64 Resistance = 0.0;
     863           4 :     Real64 TotThickness = 0.0;
     864             : 
     865             :     // CTF stuff
     866           4 :     int TotalLayers = state.dataConstruction->Construct(ConstructionNum).TotLayers;
     867             :     // get pipe properties
     868           4 :     if (TotalLayers == 1) { // no insulation layer
     869             : 
     870           0 :         this->PipeConductivity = state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(1))->Conductivity;
     871           0 :         this->PipeDensity = state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(1))->Density;
     872           0 :         this->PipeCp = state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(1))->SpecHeat;
     873           0 :         this->PipeOD = this->PipeID + 2.0 * state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(1))->Thickness;
     874           0 :         this->InsulationOD = this->PipeOD;
     875           0 :         this->SumTK = state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(1))->Thickness /
     876           0 :                       state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(1))->Conductivity;
     877             : 
     878           4 :     } else if (TotalLayers >= 2) { // first layers are insulation, last layer is pipe
     879             : 
     880           8 :         for (int LayerNum = 1; LayerNum <= TotalLayers - 1; ++LayerNum) {
     881           4 :             Resistance += state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->Thickness /
     882           4 :                           state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->Conductivity;
     883           4 :             Density = state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->Density *
     884           4 :                       state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->Thickness;
     885           4 :             TotThickness += state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->Thickness;
     886           4 :             SpHeat = state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->SpecHeat *
     887           4 :                      state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->Thickness;
     888           4 :             this->InsulationThickness =
     889           4 :                 state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->Thickness;
     890           4 :             this->SumTK += state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->Thickness /
     891           4 :                            state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(LayerNum))->Conductivity;
     892             :         }
     893             : 
     894           4 :         this->InsulationResistance = Resistance;
     895           4 :         this->InsulationConductivity = TotThickness / Resistance;
     896           4 :         this->InsulationDensity = Density / TotThickness;
     897           4 :         this->InsulationCp = SpHeat / TotThickness;
     898           4 :         this->InsulationThickness = TotThickness;
     899             : 
     900           4 :         this->PipeConductivity =
     901           4 :             state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(TotalLayers))->Conductivity;
     902           4 :         this->PipeDensity = state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(TotalLayers))->Density;
     903           4 :         this->PipeCp = state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(TotalLayers))->SpecHeat;
     904             : 
     905           4 :         this->PipeOD =
     906           4 :             this->PipeID + 2.0 * state.dataMaterial->Material(state.dataConstruction->Construct(ConstructionNum).LayerPoint(TotalLayers))->Thickness;
     907           4 :         this->InsulationOD = this->PipeOD + 2.0 * this->InsulationThickness;
     908             : 
     909             :     } else {
     910           0 :         ShowSevereError(
     911           0 :             state, format("{}: invalid {}=\"{}\", too many layers=[{}], only 1 or 2 allowed.", PipeType, FieldName, ConstructionName, TotalLayers));
     912           0 :         ErrorsFound = true;
     913             :     }
     914           4 : }
     915             : 
     916           4 : void PipeHTData::oneTimeInit_new(EnergyPlusData &state)
     917             : {
     918           4 :     bool errFlag = false;
     919           4 :     PlantUtilities::ScanPlantLoopsForObject(state, this->Name, this->Type, this->plantLoc, errFlag, _, _, _, _, _);
     920           4 :     if (errFlag) {
     921           0 :         ShowFatalError(state, "InitPipesHeatTransfer: Program terminated due to previous condition(s).");
     922             :     }
     923           4 : }
     924             : 
     925       58100 : void PipeHTData::InitPipesHeatTransfer(EnergyPlusData &state, bool const FirstHVACIteration // component number
     926             : )
     927             : {
     928             : 
     929             :     // SUBROUTINE INFORMATION:
     930             :     //       AUTHOR         Simon Rees
     931             :     //       DATE WRITTEN   July 2007
     932             :     //       MODIFIED       L. Gu, 6/19/08, pipe wall heat capacity has metal layer only
     933             :     //       RE-ENGINEERED  na
     934             : 
     935             :     // PURPOSE OF THIS SUBROUTINE:
     936             :     // This subroutine Resets the elements of the data structure as necessary
     937             :     // at the first step, and start of each call to simulated
     938             : 
     939             :     // METHODOLOGY EMPLOYED:
     940             :     // Check flags and update data structure
     941             : 
     942             :     // Using/Aliasing
     943       58100 :     Real64 SysTimeElapsed = state.dataHVACGlobal->SysTimeElapsed;
     944       58100 :     Real64 TimeStepSysSec = state.dataHVACGlobal->TimeStepSysSec;
     945             :     using FluidProperties::GetDensityGlycol;
     946             :     using FluidProperties::GetSpecificHeatGlycol;
     947             :     using ScheduleManager::GetCurrentScheduleValue;
     948             : 
     949             :     // SUBROUTINE PARAMETER DEFINITIONS:
     950             :     static constexpr std::string_view RoutineName("InitPipesHeatTransfer");
     951             : 
     952             :     // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
     953             : 
     954             :     Real64 FirstTemperatures; // initial temperature of every node in pipe (set to inlet temp) [C]
     955             :     int TimeIndex;
     956             :     int LengthIndex;
     957             :     int DepthIndex;
     958             :     int WidthIndex;
     959             :     Real64 CurrentDepth;
     960             :     Real64 CurTemp;
     961             :     Real64 CurSimDay;
     962             :     bool PushArrays;
     963             : 
     964             :     // Assign variable
     965       58100 :     CurSimDay = double(state.dataGlobal->DayOfSim);
     966             : 
     967             :     // some useful module variables
     968       58100 :     state.dataPipeHT->nsvInletNodeNum = this->InletNodeNum;
     969       58100 :     state.dataPipeHT->nsvOutletNodeNum = this->OutletNodeNum;
     970       58100 :     state.dataPipeHT->nsvMassFlowRate = state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).MassFlowRate;
     971       58100 :     state.dataPipeHT->nsvInletTemp = state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).Temp;
     972             : 
     973             :     // initialize temperatures by inlet node temp
     974       58100 :     if ((state.dataGlobal->BeginSimFlag && this->BeginSimInit) || (state.dataGlobal->BeginEnvrnFlag && this->BeginSimEnvrn)) {
     975             : 
     976          20 :         if (this->EnvironmentPtr == EnvrnPtr::GroundEnv) {
     977          20 :             for (TimeIndex = TimeIndex::Previous; TimeIndex <= TimeIndex::Tentative; ++TimeIndex) {
     978             :                 // Loop through all length, depth, and width of pipe to init soil temperature
     979         315 :                 for (LengthIndex = 1; LengthIndex <= this->NumSections; ++LengthIndex) {
     980        2700 :                     for (DepthIndex = 1; DepthIndex <= this->NumDepthNodes; ++DepthIndex) {
     981       12000 :                         for (WidthIndex = 1; WidthIndex <= this->PipeNodeWidth; ++WidthIndex) {
     982        9600 :                             CurrentDepth = (DepthIndex - 1) * this->dSregular;
     983        9600 :                             this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex) = this->TBND(state, CurrentDepth);
     984             :                         }
     985             :                     }
     986             :                 }
     987             :             }
     988             :         }
     989             : 
     990             :         // We also need to re-init the Hanby arrays for all pipes, including buried
     991          20 :         FirstTemperatures = 21.0; // Node(InletNodeNum)%Temp
     992          20 :         this->TentativeFluidTemp = FirstTemperatures;
     993          20 :         this->FluidTemp = FirstTemperatures;
     994          20 :         this->PreviousFluidTemp = FirstTemperatures;
     995          20 :         this->TentativePipeTemp = FirstTemperatures;
     996          20 :         this->PipeTemp = FirstTemperatures;
     997          20 :         this->PreviousPipeTemp = FirstTemperatures;
     998          20 :         this->PreviousSimTime = 0.0;
     999          20 :         state.dataPipeHT->nsvDeltaTime = 0.0;
    1000          20 :         state.dataPipeHT->nsvOutletTemp = 0.0;
    1001          20 :         state.dataPipeHT->nsvEnvironmentTemp = 0.0;
    1002          20 :         state.dataPipeHT->nsvEnvHeatLossRate = 0.0;
    1003          20 :         state.dataPipeHT->nsvFluidHeatLossRate = 0.0;
    1004             : 
    1005          20 :         this->BeginSimInit = false;
    1006          20 :         this->BeginSimEnvrn = false;
    1007             :     }
    1008             : 
    1009       58100 :     if (!state.dataGlobal->BeginSimFlag) this->BeginSimInit = true;
    1010       58100 :     if (!state.dataGlobal->BeginEnvrnFlag) this->BeginSimEnvrn = true;
    1011             : 
    1012             :     // time step in seconds
    1013       58100 :     state.dataPipeHT->nsvDeltaTime = TimeStepSysSec;
    1014       58100 :     state.dataPipeHT->nsvNumInnerTimeSteps = int(state.dataPipeHT->nsvDeltaTime / InnerDeltaTime);
    1015             : 
    1016             :     // previous temps are updated if necessary at start of timestep rather than end
    1017       58100 :     if ((FirstHVACIteration && this->FirstHVACupdateFlag) || (state.dataGlobal->BeginEnvrnFlag && this->BeginEnvrnupdateFlag)) {
    1018             : 
    1019             :         // We need to update boundary conditions here, as well as updating the arrays
    1020        7260 :         if (this->EnvironmentPtr == EnvrnPtr::GroundEnv) {
    1021             : 
    1022             :             // And then update Ground Boundary Conditions
    1023        7260 :             for (TimeIndex = 1; TimeIndex <= TimeIndex::Tentative; ++TimeIndex) {
    1024      114345 :                 for (LengthIndex = 1; LengthIndex <= this->NumSections; ++LengthIndex) {
    1025      980100 :                     for (DepthIndex = 1; DepthIndex <= this->NumDepthNodes; ++DepthIndex) {
    1026             :                         // Farfield boundary
    1027      871200 :                         CurrentDepth = (DepthIndex - 1) * this->dSregular;
    1028      871200 :                         CurTemp = this->TBND(state, CurrentDepth);
    1029      871200 :                         this->T(1, DepthIndex, LengthIndex, TimeIndex) = CurTemp;
    1030             :                     }
    1031      544500 :                     for (WidthIndex = 1; WidthIndex <= this->PipeNodeWidth; ++WidthIndex) {
    1032             :                         // Bottom side of boundary
    1033      435600 :                         CurrentDepth = this->DomainDepth;
    1034      435600 :                         CurTemp = this->TBND(state, CurrentDepth);
    1035      435600 :                         this->T(WidthIndex, this->NumDepthNodes, LengthIndex, TimeIndex) = CurTemp;
    1036             :                     }
    1037             :                 }
    1038             :             }
    1039             :         }
    1040             : 
    1041             :         // should next choose environment temperature according to coupled with air or ground
    1042        7260 :         switch (this->EnvironmentPtr) {
    1043        1815 :         case EnvrnPtr::GroundEnv: {
    1044             :             // EnvironmentTemp = GroundTemp
    1045        1815 :         } break;
    1046        1815 :         case EnvrnPtr::OutsideAirEnv: {
    1047        1815 :             state.dataPipeHT->nsvEnvironmentTemp = state.dataEnvrn->OutDryBulbTemp;
    1048        1815 :         } break;
    1049        1815 :         case EnvrnPtr::ZoneEnv: {
    1050        1815 :             state.dataPipeHT->nsvEnvironmentTemp = state.dataZoneTempPredictorCorrector->zoneHeatBalance(this->EnvrZonePtr).MAT;
    1051        1815 :         } break;
    1052        1815 :         case EnvrnPtr::ScheduleEnv: {
    1053        1815 :             state.dataPipeHT->nsvEnvironmentTemp = GetCurrentScheduleValue(state, this->EnvrSchedPtr);
    1054        1815 :         } break;
    1055           0 :         case EnvrnPtr::None: { // default to outside temp
    1056           0 :             state.dataPipeHT->nsvEnvironmentTemp = state.dataEnvrn->OutDryBulbTemp;
    1057           0 :         } break;
    1058           0 :         default:
    1059           0 :             break;
    1060             :         }
    1061             : 
    1062        7260 :         this->BeginEnvrnupdateFlag = false;
    1063        7260 :         this->FirstHVACupdateFlag = false;
    1064             :     }
    1065             : 
    1066       58100 :     if (!state.dataGlobal->BeginEnvrnFlag) this->BeginEnvrnupdateFlag = true;
    1067       58100 :     if (!FirstHVACIteration) this->FirstHVACupdateFlag = true;
    1068             : 
    1069             :     // Calculate the current sim time for this pipe (not necessarily structure variable, but it is ok for consistency)
    1070       58100 :     this->CurrentSimTime = (state.dataGlobal->DayOfSim - 1) * 24 + state.dataGlobal->HourOfDay - 1 +
    1071       58100 :                            (state.dataGlobal->TimeStep - 1) * state.dataGlobal->TimeStepZone + SysTimeElapsed;
    1072       58100 :     if (std::abs(this->CurrentSimTime - this->PreviousSimTime) > 1.0e-6) {
    1073        6372 :         PushArrays = true;
    1074        6372 :         this->PreviousSimTime = this->CurrentSimTime;
    1075             :     } else {
    1076       51728 :         PushArrays = false; // Time hasn't passed, don't accept the tentative values yet!
    1077             :     }
    1078             : 
    1079       58100 :     if (PushArrays) {
    1080             : 
    1081             :         // If sim time has changed all values from previous runs should have been acceptable.
    1082             :         // Thus we will now shift the arrays from 2>1 and 3>2 so we can then begin
    1083             :         // to update 2 and 3 again.
    1084        6372 :         if (this->EnvironmentPtr == EnvrnPtr::GroundEnv) {
    1085       31860 :             for (LengthIndex = 2; LengthIndex <= this->NumSections; ++LengthIndex) {
    1086      272403 :                 for (DepthIndex = 1; DepthIndex <= this->NumDepthNodes; ++DepthIndex) {
    1087      968544 :                     for (WidthIndex = 2; WidthIndex <= this->PipeNodeWidth; ++WidthIndex) {
    1088             :                         // This will essentially 'accept' the tentative values that were calculated last iteration
    1089             :                         // as the new officially 'current' values
    1090      726408 :                         this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Current) =
    1091      726408 :                             this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Tentative);
    1092             :                     }
    1093             :                 }
    1094             :             }
    1095             :         }
    1096             : 
    1097             :         // Then update the Hanby near pipe model temperatures
    1098        6372 :         this->FluidTemp = this->TentativeFluidTemp;
    1099        6372 :         this->PipeTemp = this->TentativePipeTemp;
    1100             : 
    1101             :     } else { //  IF(.NOT. FirstHVACIteration)THEN
    1102             : 
    1103             :         // If we don't have FirstHVAC, the last iteration values were not accepted, and we should
    1104             :         // not step through time.  Thus we will revert our T(3,:,:,:) array back to T(2,:,:,:) to
    1105             :         // start over with the same values as last time.
    1106     1034560 :         for (LengthIndex = 2; LengthIndex <= this->NumSections; ++LengthIndex) {
    1107     2948496 :             for (DepthIndex = 1; DepthIndex <= this->NumDepthNodes; ++DepthIndex) {
    1108     7862656 :                 for (WidthIndex = 2; WidthIndex <= this->PipeNodeWidth; ++WidthIndex) {
    1109             :                     // This will essentially erase the past iterations and revert back to the correct values
    1110     5896992 :                     this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Tentative) =
    1111     5896992 :                         this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Current);
    1112             :                 }
    1113             :             }
    1114             :         }
    1115             : 
    1116             :         // Similarly for Hanby model arrays
    1117       51728 :         this->TentativeFluidTemp = this->FluidTemp;
    1118       51728 :         this->TentativePipeTemp = this->PipeTemp;
    1119             :     }
    1120             : 
    1121             :     // This still catches even in winter design day
    1122             :     // Even though the loop eventually has no flow rate, it appears it initializes to a value, then converges to OFF
    1123             :     // Thus, this is called at the beginning of every time step once.
    1124             : 
    1125       58100 :     this->FluidSpecHeat = GetSpecificHeatGlycol(state,
    1126       58100 :                                                 state.dataPlnt->PlantLoop(this->plantLoc.loopNum).FluidName,
    1127       58100 :                                                 state.dataPipeHT->nsvInletTemp,
    1128       58100 :                                                 state.dataPlnt->PlantLoop(this->plantLoc.loopNum).FluidIndex,
    1129             :                                                 RoutineName);
    1130       58100 :     this->FluidDensity = GetDensityGlycol(state,
    1131       58100 :                                           state.dataPlnt->PlantLoop(this->plantLoc.loopNum).FluidName,
    1132       58100 :                                           state.dataPipeHT->nsvInletTemp,
    1133       58100 :                                           state.dataPlnt->PlantLoop(this->plantLoc.loopNum).FluidIndex,
    1134             :                                           RoutineName);
    1135             : 
    1136             :     // At this point, for all Pipe:Interior objects we should zero out the energy and rate arrays
    1137       58100 :     this->FluidHeatLossRate = 0.0;
    1138       58100 :     this->FluidHeatLossEnergy = 0.0;
    1139       58100 :     this->EnvironmentHeatLossRate = 0.0;
    1140       58100 :     this->EnvHeatLossEnergy = 0.0;
    1141       58100 :     this->ZoneHeatGainRate = 0.0;
    1142       58100 :     state.dataPipeHT->nsvFluidHeatLossRate = 0.0;
    1143       58100 :     state.dataPipeHT->nsvEnvHeatLossRate = 0.0;
    1144       58100 :     state.dataPipeHT->nsvOutletTemp = 0.0;
    1145             : 
    1146       58100 :     if (this->FluidDensity > 0.0) {
    1147             :         // The density will only be zero the first time through, which will be a warmup day, and not reported
    1148       58100 :         state.dataPipeHT->nsvVolumeFlowRate = state.dataPipeHT->nsvMassFlowRate / this->FluidDensity;
    1149             :     }
    1150       58100 : }
    1151             : 
    1152             : //==============================================================================
    1153             : 
    1154     4467317 : void PipeHTData::CalcPipesHeatTransfer(EnergyPlusData &state, ObjexxFCL::Optional_int_const LengthIndex)
    1155             : {
    1156             : 
    1157             :     //       AUTHOR         Simon Rees
    1158             :     //       DATE WRITTEN   July 2007
    1159             :     //       MODIFIED       na
    1160             :     //       RE-ENGINEERED  na
    1161             : 
    1162             :     // PURPOSE OF THIS SUBROUTINE:
    1163             :     // This subroutine does all of the stuff that is necessary to simulate
    1164             :     // a Pipe Heat Transfer.  Calls are made to appropriate routines
    1165             :     // for heat transfer coefficients
    1166             : 
    1167             :     // METHODOLOGY EMPLOYED:
    1168             :     // Differential equations for pipe and fluid nodes along the pipe are solved
    1169             :     // taking backward differences in time.
    1170             :     // The heat loss/gain calculations are run continuously, even when the loop is off.
    1171             :     // Fluid temps will drift according to environmental conditions when there is zero flow.
    1172             : 
    1173             :     // REFERENCES:
    1174             : 
    1175             :     // Using/Aliasing
    1176             :     using namespace DataEnvironment;
    1177             : 
    1178             :     // fluid node heat balance (see engineering doc).
    1179     4467317 :     Real64 A1(0.0); // sum of the heat balance terms
    1180     4467317 :     Real64 A2(0.0); // mass flow term
    1181     4467317 :     Real64 A3(0.0); // inside pipe wall convection term
    1182     4467317 :     Real64 A4(0.0); // fluid node heat capacity term
    1183             :     // pipe wall node heat balance (see engineering doc).
    1184     4467317 :     Real64 B1(0.0); // sum of the heat balance terms
    1185     4467317 :     Real64 B2(0.0); // inside pipe wall convection term
    1186     4467317 :     Real64 B3(0.0); // outside pipe wall convection term
    1187     4467317 :     Real64 B4(0.0); // fluid node heat capacity term
    1188             : 
    1189     4467317 :     Real64 AirConvCoef(0.0);           // air-pipe convection coefficient
    1190     4467317 :     Real64 FluidConvCoef(0.0);         // fluid-pipe convection coefficient
    1191     4467317 :     Real64 EnvHeatTransCoef(0.0);      // external convection coefficient (outside pipe)
    1192     4467317 :     Real64 FluidNodeHeatCapacity(0.0); // local var for MCp for single node of pipe
    1193             : 
    1194     4467317 :     int PipeDepth(0);
    1195     4467317 :     int PipeWidth(0);
    1196             :     int curnode;
    1197             :     Real64 TempBelow;
    1198             :     Real64 TempBeside;
    1199             :     Real64 TempAbove;
    1200             :     Real64 Numerator;
    1201             :     Real64 Denominator;
    1202             :     Real64 SurfaceTemp;
    1203             : 
    1204             :     // traps fluid properties problems such as freezing conditions
    1205     4467317 :     if (this->FluidSpecHeat <= 0.0 || this->FluidDensity <= 0.0) {
    1206             :         // leave the state of the pipe as it was
    1207           0 :         state.dataPipeHT->nsvOutletTemp = this->TentativeFluidTemp(this->NumSections);
    1208             :         // set heat transfer rates to zero for consistency
    1209           0 :         state.dataPipeHT->nsvEnvHeatLossRate = 0.0;
    1210           0 :         state.dataPipeHT->nsvFluidHeatLossRate = 0.0;
    1211           0 :         return;
    1212             :     }
    1213             : 
    1214             :     //  AirConvCoef =  OutsidePipeHeatTransCoef(PipeHTNum)
    1215             :     // Revised by L. Gu by including insulation conductance 6/19/08
    1216             : 
    1217     4467317 :     if (this->EnvironmentPtr != EnvrnPtr::GroundEnv) {
    1218      558537 :         AirConvCoef = 1.0 / (1.0 / this->OutsidePipeHeatTransCoef(state) + this->InsulationResistance);
    1219             :     }
    1220             : 
    1221     4467317 :     FluidConvCoef = this->CalcPipeHeatTransCoef(state, state.dataPipeHT->nsvInletTemp, state.dataPipeHT->nsvMassFlowRate, this->PipeID);
    1222             : 
    1223             :     // heat transfer to air or ground
    1224     4467317 :     switch (this->EnvironmentPtr) {
    1225     3908780 :     case EnvrnPtr::GroundEnv: {
    1226             :         // Approximate conductance using ground conductivity, (h=k/L), where L is grid spacing
    1227             :         // between pipe wall and next closest node.
    1228     3908780 :         EnvHeatTransCoef = this->SoilConductivity / (this->dSregular - (this->PipeID / 2.0));
    1229     3908780 :     } break;
    1230      186179 :     case EnvrnPtr::OutsideAirEnv: {
    1231      186179 :         EnvHeatTransCoef = AirConvCoef;
    1232      186179 :     } break;
    1233      186179 :     case EnvrnPtr::ZoneEnv: {
    1234      186179 :         EnvHeatTransCoef = AirConvCoef;
    1235      186179 :     } break;
    1236      186179 :     case EnvrnPtr::ScheduleEnv: {
    1237      186179 :         EnvHeatTransCoef = AirConvCoef;
    1238      186179 :     } break;
    1239           0 :     case EnvrnPtr::None: {
    1240           0 :         EnvHeatTransCoef = 0.0;
    1241           0 :     } break;
    1242           0 :     default: {
    1243           0 :         EnvHeatTransCoef = 0.0;
    1244           0 :     } break;
    1245             :     }
    1246             : 
    1247             :     // work out the coefficients
    1248     4467317 :     FluidNodeHeatCapacity =
    1249     4467317 :         this->SectionArea * this->Length / this->NumSections * this->FluidSpecHeat * this->FluidDensity; // Mass of Node x Specific heat
    1250             : 
    1251             :     // coef of fluid heat balance
    1252     4467317 :     A1 = FluidNodeHeatCapacity + state.dataPipeHT->nsvMassFlowRate * this->FluidSpecHeat * state.dataPipeHT->nsvDeltaTime +
    1253     4467317 :          FluidConvCoef * this->InsideArea * state.dataPipeHT->nsvDeltaTime;
    1254             : 
    1255     4467317 :     A2 = state.dataPipeHT->nsvMassFlowRate * this->FluidSpecHeat * state.dataPipeHT->nsvDeltaTime;
    1256             : 
    1257     4467317 :     A3 = FluidConvCoef * this->InsideArea * state.dataPipeHT->nsvDeltaTime;
    1258             : 
    1259     4467317 :     A4 = FluidNodeHeatCapacity;
    1260             : 
    1261             :     // coef of pipe heat balance
    1262     4467317 :     B1 = this->PipeHeatCapacity + FluidConvCoef * this->InsideArea * state.dataPipeHT->nsvDeltaTime +
    1263     4467317 :          EnvHeatTransCoef * this->OutsideArea * state.dataPipeHT->nsvDeltaTime;
    1264             : 
    1265     4467317 :     B2 = A3;
    1266             : 
    1267     4467317 :     B3 = EnvHeatTransCoef * this->OutsideArea * state.dataPipeHT->nsvDeltaTime;
    1268             : 
    1269     4467317 :     B4 = this->PipeHeatCapacity;
    1270             : 
    1271     4467317 :     this->TentativeFluidTemp(0) = state.dataPipeHT->nsvInletTemp;
    1272             : 
    1273     4467317 :     this->TentativePipeTemp(0) = this->PipeTemp(1); // for convenience
    1274             : 
    1275     4467317 :     if (present(LengthIndex)) { // Just simulate the single section if being called from Pipe:Underground
    1276             : 
    1277     3908780 :         PipeDepth = this->PipeNodeDepth;
    1278     3908780 :         PipeWidth = this->PipeNodeWidth;
    1279     3908780 :         TempBelow = this->T(PipeWidth, PipeDepth + 1, LengthIndex, TimeIndex::Current);
    1280     3908780 :         TempBeside = this->T(PipeWidth - 1, PipeDepth, LengthIndex, TimeIndex::Current);
    1281     3908780 :         TempAbove = this->T(PipeWidth, PipeDepth - 1, LengthIndex, TimeIndex::Current);
    1282     3908780 :         state.dataPipeHT->nsvEnvironmentTemp = (TempBelow + TempBeside + TempAbove) / 3.0;
    1283             : 
    1284     7817560 :         this->TentativeFluidTemp(LengthIndex) = (A2 * this->TentativeFluidTemp(LengthIndex - 1) +
    1285     3908780 :                                                  A3 / B1 * (B3 * state.dataPipeHT->nsvEnvironmentTemp + B4 * this->PreviousPipeTemp(LengthIndex)) +
    1286     3908780 :                                                  A4 * this->PreviousFluidTemp(LengthIndex)) /
    1287     3908780 :                                                 (A1 - A3 * B2 / B1);
    1288             : 
    1289     3908780 :         this->TentativePipeTemp(LengthIndex) =
    1290     3908780 :             (B2 * this->TentativeFluidTemp(LengthIndex) + B3 * state.dataPipeHT->nsvEnvironmentTemp + B4 * this->PreviousPipeTemp(LengthIndex)) / B1;
    1291             : 
    1292             :         // Get exterior surface temperature from energy balance at the surface
    1293     3908780 :         Numerator = state.dataPipeHT->nsvEnvironmentTemp - this->TentativeFluidTemp(LengthIndex);
    1294     3908780 :         Denominator = EnvHeatTransCoef * ((1 / EnvHeatTransCoef) + this->SumTK);
    1295     3908780 :         SurfaceTemp = state.dataPipeHT->nsvEnvironmentTemp - Numerator / Denominator;
    1296             : 
    1297             :         // keep track of environmental heat loss rate - not same as fluid loss at same time
    1298     3908780 :         state.dataPipeHT->nsvEnvHeatLossRate += EnvHeatTransCoef * this->OutsideArea * (SurfaceTemp - state.dataPipeHT->nsvEnvironmentTemp);
    1299             : 
    1300             :     } else { // Simulate all sections at once if not pipe:underground
    1301             : 
    1302             :         // start loop along pipe
    1303             :         // b1 must not be zero but this should have been checked on input
    1304    11729277 :         for (curnode = 1; curnode <= this->NumSections; ++curnode) {
    1305    11170740 :             this->TentativeFluidTemp(curnode) = (A2 * this->TentativeFluidTemp(curnode - 1) +
    1306    11170740 :                                                  A3 / B1 * (B3 * state.dataPipeHT->nsvEnvironmentTemp + B4 * this->PreviousPipeTemp(curnode)) +
    1307    11170740 :                                                  A4 * this->PreviousFluidTemp(curnode)) /
    1308    11170740 :                                                 (A1 - A3 * B2 / B1);
    1309             : 
    1310    22341480 :             this->TentativePipeTemp(curnode) =
    1311    11170740 :                 (B2 * this->TentativeFluidTemp(curnode) + B3 * state.dataPipeHT->nsvEnvironmentTemp + B4 * this->PreviousPipeTemp(curnode)) / B1;
    1312             : 
    1313             :             // Get exterior surface temperature from energy balance at the surface
    1314    11170740 :             Numerator = state.dataPipeHT->nsvEnvironmentTemp - this->TentativeFluidTemp(curnode);
    1315    11170740 :             Denominator = EnvHeatTransCoef * ((1 / EnvHeatTransCoef) + this->SumTK);
    1316    11170740 :             SurfaceTemp = state.dataPipeHT->nsvEnvironmentTemp - Numerator / Denominator;
    1317             : 
    1318             :             // Keep track of environmental heat loss
    1319    11170740 :             state.dataPipeHT->nsvEnvHeatLossRate += EnvHeatTransCoef * this->OutsideArea * (SurfaceTemp - state.dataPipeHT->nsvEnvironmentTemp);
    1320             :         }
    1321             :     }
    1322             : 
    1323     8934634 :     state.dataPipeHT->nsvFluidHeatLossRate =
    1324     4467317 :         state.dataPipeHT->nsvMassFlowRate * this->FluidSpecHeat * (this->TentativeFluidTemp(0) - this->TentativeFluidTemp(this->NumSections));
    1325             : 
    1326     4467317 :     state.dataPipeHT->nsvOutletTemp = this->TentativeFluidTemp(this->NumSections);
    1327             : }
    1328             : 
    1329             : //==============================================================================
    1330             : 
    1331      186179 : void PipeHTData::CalcBuriedPipeSoil(EnergyPlusData &state) // Current Simulation Pipe Number
    1332             : {
    1333             : 
    1334             :     //       AUTHOR         Edwin Lee
    1335             :     //       DATE WRITTEN   May 2008
    1336             :     //       MODIFIED       na
    1337             :     //       RE-ENGINEERED  na
    1338             : 
    1339             :     // PURPOSE OF THIS SUBROUTINE:
    1340             :     // This subroutine does all of the stuff that is necessary to simulate
    1341             :     // soil heat transfer with a Buried Pipe.
    1342             : 
    1343             :     // METHODOLOGY EMPLOYED:
    1344             :     // An implicit pseudo 3D finite difference grid
    1345             :     // is set up, which simulates transient behavior in the soil.
    1346             :     // This then interfaces with the Hanby model for near-pipe region
    1347             : 
    1348             :     // Using/Aliasing
    1349             :     using Convect::CalcASHRAESimpExtConvCoeff;
    1350             : 
    1351             :     // SUBROUTINE PARAMETER DEFINITIONS:
    1352      186179 :     int constexpr NumSections(20);
    1353      186179 :     Real64 constexpr ConvCrit(0.05);
    1354      186179 :     int constexpr MaxIterations(200);
    1355      186179 :     Real64 constexpr StefBoltzmann(5.6697e-08); // Stefan-Boltzmann constant
    1356             : 
    1357             :     // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
    1358      186179 :     int IterationIndex(0);    // Index when stepping through equations
    1359      186179 :     int LengthIndex(0);       // Index for nodes along length of pipe
    1360      186179 :     int DepthIndex(0);        // Index for nodes in the depth direction
    1361      186179 :     int WidthIndex(0);        // Index for nodes in the width direction
    1362      186179 :     Real64 ConvCoef(0.0);     // Current convection coefficient = f(Wind Speed,Roughness)
    1363      186179 :     Real64 RadCoef(0.0);      // Current radiation coefficient
    1364      186179 :     Real64 QSolAbsorbed(0.0); // Current total solar energy absorbed
    1365      372358 :     Array3D<Real64> T_O(this->PipeNodeWidth, this->NumDepthNodes, NumSections);
    1366             : 
    1367             :     // Local variable placeholders for code readability
    1368      186179 :     Real64 A1(0.0);                                                               // Placeholder for CoefA1
    1369      186179 :     Real64 A2(0.0);                                                               // Placeholder for CoefA2
    1370      186179 :     Real64 NodeBelow(0.0);                                                        // Placeholder for Node temp below current node
    1371      186179 :     Real64 NodeAbove(0.0);                                                        // Placeholder for Node temp above current node
    1372      186179 :     Real64 NodeRight(0.0);                                                        // Placeholder for Node temp to the right of current node
    1373      186179 :     Real64 NodeLeft(0.0);                                                         // Placeholder for Node temp to the left of current node
    1374      186179 :     Real64 NodePast(0.0);                                                         // Placeholder for Node temp at current node but previous time step
    1375      186179 :     Real64 PastNodeTempAbs(0.0);                                                  // Placeholder for absolute temperature (K) version of NodePast
    1376      186179 :     Real64 Ttemp(0.0);                                                            // Placeholder for a current temperature node in convergence check
    1377      186179 :     Real64 SkyTempAbs(0.0);                                                       // Placeholder for current sky temperature in Kelvin
    1378      186179 :     Material::SurfaceRoughness TopRoughness(Material::SurfaceRoughness::Invalid); // Placeholder for soil surface roughness
    1379      186179 :     Real64 TopThermAbs(0.0);                                                      // Placeholder for soil thermal radiation absorptivity
    1380      186179 :     Real64 TopSolarAbs(0.0);                                                      // Placeholder for soil solar radiation absorptivity
    1381      186179 :     Real64 kSoil(0.0);                                                            // Placeholder for soil conductivity
    1382      186179 :     Real64 dS(0.0);                                                               // Placeholder for soil grid spacing
    1383      186179 :     Real64 rho(0.0);                                                              // Placeholder for soil density
    1384      186179 :     Real64 Cp(0.0);                                                               // Placeholder for soil specific heat
    1385             : 
    1386             :     // There are a number of coefficients which change through the simulation, and they are updated here
    1387      186179 :     this->FourierDS = this->SoilDiffusivity * state.dataPipeHT->nsvDeltaTime / pow_2(this->dSregular); // Eq. D4
    1388      186179 :     this->CoefA1 = this->FourierDS / (1 + 4 * this->FourierDS);                                        // Eq. D2
    1389      186179 :     this->CoefA2 = 1 / (1 + 4 * this->FourierDS);                                                      // Eq. D3
    1390             : 
    1391      195439 :     for (IterationIndex = 1; IterationIndex <= MaxIterations; ++IterationIndex) {
    1392      195439 :         if (IterationIndex == MaxIterations) {
    1393           0 :             ShowWarningError(state, format("BuriedPipeHeatTransfer: Large number of iterations detected in object: {}", this->Name));
    1394             :         }
    1395             : 
    1396             :         // Store computed values in T_O array
    1397     3908780 :         for (LengthIndex = 2; LengthIndex <= this->NumSections; ++LengthIndex) {
    1398    29706728 :             for (DepthIndex = 1; DepthIndex <= this->NumDepthNodes - 1; ++DepthIndex) {
    1399   103973548 :                 for (WidthIndex = 2; WidthIndex <= this->PipeNodeWidth; ++WidthIndex) {
    1400    77980161 :                     T_O(WidthIndex, DepthIndex, LengthIndex) = this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Tentative);
    1401             :                 }
    1402             :             }
    1403             :         }
    1404             : 
    1405             :         // Loop along entire length of pipe, analyzing cross sects
    1406     4104219 :         for (LengthIndex = 1; LengthIndex <= this->NumSections; ++LengthIndex) {
    1407    31270240 :             for (DepthIndex = 1; DepthIndex <= this->NumDepthNodes - 1; ++DepthIndex) {
    1408   109445840 :                 for (WidthIndex = 2; WidthIndex <= this->PipeNodeWidth; ++WidthIndex) {
    1409             : 
    1410    82084380 :                     if (DepthIndex == 1) { // Soil Surface Boundary
    1411             : 
    1412             :                         // If on soil boundary, load up local variables and perform calculations
    1413    11726340 :                         NodePast = this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Previous);
    1414    11726340 :                         PastNodeTempAbs = NodePast + Constant::Kelvin;
    1415    11726340 :                         SkyTempAbs = state.dataEnvrn->SkyTemp + Constant::Kelvin;
    1416    11726340 :                         TopRoughness = this->SoilRoughness;
    1417    11726340 :                         TopThermAbs = this->SoilThermAbs;
    1418    11726340 :                         TopSolarAbs = this->SoilSolarAbs;
    1419    11726340 :                         kSoil = this->SoilConductivity;
    1420    11726340 :                         dS = this->dSregular;
    1421    11726340 :                         rho = this->SoilDensity;
    1422    11726340 :                         Cp = this->SoilCp;
    1423             : 
    1424             :                         // ASHRAE simple convection coefficient model for external surfaces.
    1425    11726340 :                         this->OutdoorConvCoef = CalcASHRAESimpExtConvCoeff(TopRoughness, state.dataEnvrn->WindSpeed);
    1426    11726340 :                         ConvCoef = this->OutdoorConvCoef;
    1427             : 
    1428             :                         // thermal radiation coefficient using surf temp from past time step
    1429    11726340 :                         if (std::abs(PastNodeTempAbs - SkyTempAbs) > Constant::rTinyValue) {
    1430    11726340 :                             RadCoef = StefBoltzmann * TopThermAbs * (pow_4(PastNodeTempAbs) - pow_4(SkyTempAbs)) / (PastNodeTempAbs - SkyTempAbs);
    1431             :                         } else {
    1432           0 :                             RadCoef = 0.0;
    1433             :                         }
    1434             : 
    1435             :                         // total absorbed solar - no ground solar
    1436    11726340 :                         QSolAbsorbed =
    1437    11726340 :                             TopSolarAbs * (max(state.dataEnvrn->SOLCOS(3), 0.0) * state.dataEnvrn->BeamSolarRad + state.dataEnvrn->DifSolarRad);
    1438             : 
    1439             :                         // If sun is not exposed, then turn off both solar and thermal radiation
    1440    11726340 :                         if (!this->SolarExposed) {
    1441           0 :                             RadCoef = 0.0;
    1442           0 :                             QSolAbsorbed = 0.0;
    1443             :                         }
    1444             : 
    1445    11726340 :                         if (WidthIndex == this->PipeNodeWidth) { // Symmetric centerline boundary
    1446             : 
    1447             :                             //-Coefficients and Temperatures
    1448     3908780 :                             NodeBelow = this->T(WidthIndex, DepthIndex + 1, LengthIndex, TimeIndex::Current);
    1449     3908780 :                             NodeLeft = this->T(WidthIndex - 1, DepthIndex, LengthIndex, TimeIndex::Current);
    1450             : 
    1451             :                             //-Update Equation, basically a detailed energy balance at the surface
    1452     3908780 :                             this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Tentative) =
    1453     3908780 :                                 (QSolAbsorbed + RadCoef * state.dataEnvrn->SkyTemp + ConvCoef * state.dataEnvrn->OutDryBulbTemp +
    1454     3908780 :                                  (kSoil / dS) * (NodeBelow + 2 * NodeLeft) + (rho * Cp / state.dataPipeHT->nsvDeltaTime) * NodePast) /
    1455     3908780 :                                 (RadCoef + ConvCoef + 3 * (kSoil / dS) + (rho * Cp / state.dataPipeHT->nsvDeltaTime));
    1456             : 
    1457             :                         } else { // Soil surface, but not on centerline
    1458             : 
    1459             :                             //-Coefficients and Temperatures
    1460     7817560 :                             NodeBelow = this->T(WidthIndex, DepthIndex + 1, LengthIndex, TimeIndex::Current);
    1461     7817560 :                             NodeLeft = this->T(WidthIndex - 1, DepthIndex, LengthIndex, TimeIndex::Current);
    1462     7817560 :                             NodeRight = this->T(WidthIndex + 1, DepthIndex, LengthIndex, TimeIndex::Current);
    1463             : 
    1464             :                             //-Update Equation
    1465     7817560 :                             this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Tentative) =
    1466     7817560 :                                 (QSolAbsorbed + RadCoef * state.dataEnvrn->SkyTemp + ConvCoef * state.dataEnvrn->OutDryBulbTemp +
    1467     7817560 :                                  (kSoil / dS) * (NodeBelow + NodeLeft + NodeRight) + (rho * Cp / state.dataPipeHT->nsvDeltaTime) * NodePast) /
    1468     7817560 :                                 (RadCoef + ConvCoef + 3 * (kSoil / dS) + (rho * Cp / state.dataPipeHT->nsvDeltaTime));
    1469             : 
    1470             :                         } // Soil-to-air surface node structure
    1471             : 
    1472    70358040 :                     } else if (WidthIndex == this->PipeNodeWidth) { // On Symmetric centerline boundary
    1473             : 
    1474    23452680 :                         if (DepthIndex == this->PipeNodeDepth) { // On the node containing the pipe
    1475             : 
    1476             :                             //-Call to simulate a single pipe segment (by passing OPTIONAL LengthIndex argument)
    1477     3908780 :                             this->CalcPipesHeatTransfer(state, LengthIndex);
    1478             : 
    1479             :                             //-Update node for cartesian system
    1480     3908780 :                             this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Tentative) = this->PipeTemp(LengthIndex);
    1481             : 
    1482    19543900 :                         } else if (DepthIndex != 1) { // Not surface node
    1483             : 
    1484             :                             //-Coefficients and Temperatures
    1485    19543900 :                             NodeLeft = this->T(WidthIndex - 1, DepthIndex, LengthIndex, TimeIndex::Current);
    1486    19543900 :                             NodeAbove = this->T(WidthIndex, DepthIndex - 1, LengthIndex, TimeIndex::Current);
    1487    19543900 :                             NodeBelow = this->T(WidthIndex, DepthIndex + 1, LengthIndex, TimeIndex::Current);
    1488    19543900 :                             NodePast = this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Current - 1);
    1489    19543900 :                             A1 = this->CoefA1;
    1490    19543900 :                             A2 = this->CoefA2;
    1491             : 
    1492             :                             //-Update Equation
    1493    19543900 :                             this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Tentative) =
    1494    19543900 :                                 A1 * (NodeBelow + NodeAbove + 2 * NodeLeft) + A2 * NodePast;
    1495             : 
    1496             :                         } // Symmetric centerline node structure
    1497             : 
    1498             :                     } else { // All Normal Interior Nodes
    1499             : 
    1500             :                         //-Coefficients and Temperatures
    1501    46905360 :                         A1 = this->CoefA1;
    1502    46905360 :                         A2 = this->CoefA2;
    1503    46905360 :                         NodeBelow = this->T(WidthIndex, DepthIndex + 1, LengthIndex, TimeIndex::Current);
    1504    46905360 :                         NodeAbove = this->T(WidthIndex, DepthIndex - 1, LengthIndex, TimeIndex::Current);
    1505    46905360 :                         NodeRight = this->T(WidthIndex + 1, DepthIndex, LengthIndex, TimeIndex::Current);
    1506    46905360 :                         NodeLeft = this->T(WidthIndex - 1, DepthIndex, LengthIndex, TimeIndex::Current);
    1507    46905360 :                         NodePast = this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Current - 1);
    1508             : 
    1509             :                         //-Update Equation
    1510    46905360 :                         this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Tentative) =
    1511    46905360 :                             A1 * (NodeBelow + NodeAbove + NodeRight + NodeLeft) + A2 * NodePast; // Eq. D1
    1512             :                     }
    1513             :                 }
    1514             :             }
    1515             :         }
    1516             : 
    1517             :         // Check for convergence
    1518     3739744 :         for (LengthIndex = 2; LengthIndex <= this->NumSections; ++LengthIndex) {
    1519    28372256 :             for (DepthIndex = 1; DepthIndex <= this->NumDepthNodes - 1; ++DepthIndex) {
    1520    99289775 :                 for (WidthIndex = 2; WidthIndex <= this->PipeNodeWidth; ++WidthIndex) {
    1521    74471084 :                     Ttemp = this->T(WidthIndex, DepthIndex, LengthIndex, TimeIndex::Tentative);
    1522    74471084 :                     if (std::abs(T_O(WidthIndex, DepthIndex, LengthIndex) - Ttemp) > ConvCrit) goto IterationLoop_loop;
    1523             :                 }
    1524             :             }
    1525             :         }
    1526             : 
    1527             :         // If we didn't cycle back, then the system is converged
    1528             :         // PipeHT(PipeHTNum)%PipeUGIters=IterationIndex
    1529      186179 :         goto IterationLoop_exit;
    1530             : 
    1531        9260 :     IterationLoop_loop:;
    1532             :     }
    1533           0 : IterationLoop_exit:;
    1534      186179 : }
    1535             : 
    1536             : //==============================================================================
    1537             : 
    1538       58100 : void PipeHTData::UpdatePipesHeatTransfer(EnergyPlusData &state)
    1539             : {
    1540             : 
    1541             :     // SUBROUTINE INFORMATION:
    1542             :     //       AUTHOR         Simon Rees
    1543             :     //       DATE WRITTEN   July 2007
    1544             :     //       MODIFIED       na
    1545             :     //       RE-ENGINEERED  na
    1546             : 
    1547             :     // PURPOSE OF THIS SUBROUTINE:
    1548             :     // This subroutine does any updating that needs to be done for
    1549             :     // Pipe Heat Transfers. This routine must also set the outlet water conditions.
    1550             : 
    1551             :     // METHODOLOGY EMPLOYED:
    1552             : 
    1553             :     // REFERENCES:
    1554             :     // na
    1555             : 
    1556             :     // SUBROUTINE ARGUMENT DEFINITIONS:
    1557             :     // INTEGER, INTENT(IN) :: PipeHTNum       ! Index for the surface
    1558             : 
    1559             :     // SUBROUTINE PARAMETER DEFINITIONS:
    1560             : 
    1561             :     // INTERFACE BLOCK SPECIFICATIONS
    1562             :     // na
    1563             : 
    1564             :     // DERIVED TYPE DEFINITIONS
    1565             :     // na
    1566             : 
    1567             :     // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
    1568             : 
    1569             :     // only outlet node temp should need updating
    1570       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).Temp = state.dataPipeHT->nsvOutletTemp;
    1571             : 
    1572             :     // pass everything else through
    1573       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).TempMin = state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).TempMin;
    1574       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).TempMax = state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).TempMax;
    1575       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).MassFlowRate =
    1576       58100 :         state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).MassFlowRate;
    1577       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).MassFlowRateMin =
    1578       58100 :         state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).MassFlowRateMin;
    1579       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).MassFlowRateMax =
    1580       58100 :         state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).MassFlowRateMax;
    1581       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).MassFlowRateMinAvail =
    1582       58100 :         state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).MassFlowRateMinAvail;
    1583       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).MassFlowRateMaxAvail =
    1584       58100 :         state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).MassFlowRateMaxAvail;
    1585       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).Quality = state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).Quality;
    1586             :     // Only pass pressure if we aren't doing a pressure simulation
    1587       58100 :     switch (state.dataPlnt->PlantLoop(this->plantLoc.loopNum).PressureSimType) {
    1588       58100 :     case DataPlant::PressSimType::NoPressure:
    1589       58100 :         state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).Press = state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).Press;
    1590       58100 :         break;
    1591           0 :     default:
    1592             :         // Don't do anything
    1593           0 :         break;
    1594             :     }
    1595       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).Enthalpy = state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).Enthalpy;
    1596       58100 :     state.dataLoopNodes->Node(state.dataPipeHT->nsvOutletNodeNum).HumRat = state.dataLoopNodes->Node(state.dataPipeHT->nsvInletNodeNum).HumRat;
    1597       58100 : }
    1598             : 
    1599             : //==============================================================================
    1600             : 
    1601       58100 : void PipeHTData::ReportPipesHeatTransfer(EnergyPlusData &state)
    1602             : {
    1603             : 
    1604             :     // SUBROUTINE INFORMATION:
    1605             :     //       AUTHOR         Simon Rees
    1606             :     //       DATE WRITTEN   July 2007
    1607             :     //       MODIFIED       na
    1608             :     //       RE-ENGINEERED  na
    1609             : 
    1610             :     // PURPOSE OF THIS SUBROUTINE:
    1611             :     // This subroutine simply updates the report data
    1612             : 
    1613             :     // METHODOLOGY EMPLOYED:
    1614             :     // Standard EnergyPlus methodology.
    1615             : 
    1616             :     // REFERENCES:
    1617             :     // na
    1618             : 
    1619             :     // USE STATEMENTS:
    1620             : 
    1621             :     // Locals
    1622             :     // SUBROUTINE ARGUMENT DEFINITIONS:
    1623             : 
    1624             :     // SUBROUTINE PARAMETER DEFINITIONS:
    1625             :     // na
    1626             : 
    1627             :     // INTERFACE BLOCK SPECIFICATIONS
    1628             :     // na
    1629             : 
    1630             :     // DERIVED TYPE DEFINITIONS
    1631             :     // na
    1632             : 
    1633             :     // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
    1634             : 
    1635             :     // update flows and temps from module variables
    1636       58100 :     this->FluidInletTemp = state.dataPipeHT->nsvInletTemp;
    1637       58100 :     this->FluidOutletTemp = state.dataPipeHT->nsvOutletTemp;
    1638       58100 :     this->MassFlowRate = state.dataPipeHT->nsvMassFlowRate;
    1639       58100 :     this->VolumeFlowRate = state.dataPipeHT->nsvVolumeFlowRate;
    1640             : 
    1641             :     // update other variables from module variables
    1642       58100 :     this->FluidHeatLossRate = state.dataPipeHT->nsvFluidHeatLossRate;
    1643       58100 :     this->FluidHeatLossEnergy = state.dataPipeHT->nsvFluidHeatLossRate * state.dataPipeHT->nsvDeltaTime; // DeltaTime is in seconds
    1644       58100 :     this->PipeInletTemp = this->PipeTemp(1);
    1645       58100 :     this->PipeOutletTemp = this->PipeTemp(this->NumSections);
    1646             : 
    1647             :     // need to average the heat rate because it is now summing over multiple inner time steps
    1648       58100 :     this->EnvironmentHeatLossRate = state.dataPipeHT->nsvEnvHeatLossRate / state.dataPipeHT->nsvNumInnerTimeSteps;
    1649       58100 :     this->EnvHeatLossEnergy = this->EnvironmentHeatLossRate * state.dataPipeHT->nsvDeltaTime;
    1650             : 
    1651             :     // for zone heat gains, we assign the averaged heat rate over all inner time steps
    1652       58100 :     if (this->EnvironmentPtr == EnvrnPtr::ZoneEnv) {
    1653       14525 :         this->ZoneHeatGainRate = this->EnvironmentHeatLossRate;
    1654             :     }
    1655       58100 : }
    1656             : 
    1657             : //==============================================================================
    1658             : 
    1659     2804678 : void PipeHTData::CalcZonePipesHeatGain(EnergyPlusData &state)
    1660             : {
    1661             : 
    1662             :     // SUBROUTINE INFORMATION:
    1663             :     //       AUTHOR         Edwin Lee
    1664             :     //       DATE WRITTEN   September 2008
    1665             :     //       MODIFIED
    1666             :     //       RE-ENGINEERED  na
    1667             : 
    1668             :     // PURPOSE OF THIS SUBROUTINE:
    1669             :     // Calculates the zone internal gains due to pipe heat transfer objects.
    1670             : 
    1671             :     // METHODOLOGY EMPLOYED:
    1672             :     // Sums the heat losses from all of the water heaters in the zone to add as a gain to the zone.
    1673             : 
    1674             :     // Using/Aliasing
    1675     2804678 :     if (state.dataPipeHT->nsvNumOfPipeHT == 0) return;
    1676             : 
    1677       10808 :     if (state.dataGlobal->BeginEnvrnFlag && state.dataPipeHT->MyEnvrnFlag) {
    1678          64 :         for (auto &e : state.dataPipeHT->PipeHT)
    1679          32 :             e.ZoneHeatGainRate = 0.0;
    1680          32 :         state.dataPipeHT->MyEnvrnFlag = false;
    1681             :     }
    1682             : 
    1683       10808 :     if (!state.dataGlobal->BeginEnvrnFlag) state.dataPipeHT->MyEnvrnFlag = true;
    1684             : }
    1685             : 
    1686             : //==============================================================================
    1687             : 
    1688     4467317 : Real64 PipeHTData::CalcPipeHeatTransCoef(EnergyPlusData &state,
    1689             :                                          Real64 const Temperature,  // Temperature of water entering the surface, in C
    1690             :                                          Real64 const MassFlowRate, // Mass flow rate, in kg/s
    1691             :                                          Real64 const Diameter      // Pipe diameter, m
    1692             : )
    1693             : {
    1694             : 
    1695             :     // FUNCTION INFORMATION:
    1696             :     //       AUTHOR         Simon Rees
    1697             :     //       DATE WRITTEN   July 2007
    1698             :     //       MODIFIED       na
    1699             :     //       RE-ENGINEERED  na
    1700             : 
    1701             :     // PURPOSE OF THIS SUBROUTINE:
    1702             :     // This subroutine calculates pipe/fluid heat transfer coefficients.
    1703             :     // This routine is adapted from that in the low temp radiant surface model.
    1704             : 
    1705             :     // METHODOLOGY EMPLOYED:
    1706             :     // Currently assumes water data when calculating Pr and Re
    1707             : 
    1708             :     // REFERENCES:
    1709             :     // See RadiantSystemLowTemp module.
    1710             :     // Property data for water shown below as parameters taken from
    1711             :     // Incropera and DeWitt, Introduction to Heat Transfer, Table A.6.
    1712             :     // Heat exchanger information also from Incropera and DeWitt.
    1713             :     // Code based loosely on code from IBLAST program (research version)
    1714             : 
    1715             :     // Using/Aliasing
    1716             :     using FluidProperties::GetConductivityGlycol;
    1717             :     using FluidProperties::GetViscosityGlycol;
    1718             : 
    1719             :     // Return value
    1720             :     Real64 CalcPipeHeatTransCoef;
    1721             : 
    1722             :     // Locals
    1723             :     // SUBROUTINE ARGUMENT DEFINITIONS:
    1724             : 
    1725             :     // SUBROUTINE PARAMETER DEFINITIONS:
    1726             :     static constexpr std::string_view RoutineName("PipeHeatTransfer::CalcPipeHeatTransCoef: ");
    1727     4467317 :     Real64 constexpr MaxLaminarRe(2300.0); // Maximum Reynolds number for laminar flow
    1728     4467317 :     int constexpr NumOfPropDivisions(13);  // intervals in property correlation
    1729             :     static constexpr std::array<Real64, NumOfPropDivisions> Temps = {
    1730             :         1.85, 6.85, 11.85, 16.85, 21.85, 26.85, 31.85, 36.85, 41.85, 46.85, 51.85, 56.85, 61.85}; // Temperature, in C
    1731             :     static constexpr std::array<Real64, NumOfPropDivisions> Pr = {
    1732             :         12.22, 10.26, 8.81, 7.56, 6.62, 5.83, 5.20, 4.62, 4.16, 3.77, 3.42, 3.15, 2.88}; // Prandtl number (dimensionless)
    1733             : 
    1734             :     // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
    1735             :     Real64 InterpFrac;
    1736             :     Real64 NuD;
    1737             :     Real64 ReD;
    1738             :     Real64 Kactual;
    1739             :     Real64 MUactual;
    1740             :     Real64 PRactual;
    1741             :     int LoopNum;
    1742             : 
    1743             :     // retrieve loop index for this component so we can look up fluid properties
    1744     4467317 :     LoopNum = this->plantLoc.loopNum;
    1745             : 
    1746             :     // since the fluid properties routine doesn't have Prandtl, we'll just use water values
    1747     4467317 :     int idx = 0;
    1748    20129911 :     while (idx < NumOfPropDivisions) {
    1749    20129911 :         if (Temperature < Temps[idx]) {
    1750     4467317 :             break;
    1751             :         }
    1752    15662594 :         ++idx;
    1753             :     }
    1754             : 
    1755     4467317 :     if (idx == 0) {
    1756           0 :         PRactual = Pr[idx];
    1757     4467317 :     } else if (idx >= NumOfPropDivisions) {
    1758           0 :         PRactual = Pr[NumOfPropDivisions - 1];
    1759             :     } else {
    1760     4467317 :         InterpFrac = (Temperature - Temps[idx - 1]) / (Temps[idx] - Temps[idx - 1]);
    1761     4467317 :         PRactual = Pr[idx - 1] + InterpFrac * (Pr[idx] - Pr[idx - 1]);
    1762             :     }
    1763             : 
    1764             :     // look up conductivity and viscosity
    1765     4467317 :     Kactual = GetConductivityGlycol(
    1766     4467317 :         state, state.dataPlnt->PlantLoop(LoopNum).FluidName, this->FluidTemp(0), state.dataPlnt->PlantLoop(LoopNum).FluidIndex, RoutineName); // W/m-K
    1767     4467317 :     MUactual =
    1768     4467317 :         GetViscosityGlycol(
    1769     4467317 :             state, state.dataPlnt->PlantLoop(LoopNum).FluidName, this->FluidTemp(0), state.dataPlnt->PlantLoop(LoopNum).FluidIndex, RoutineName) /
    1770             :         1000.0; // Note fluid properties routine returns mPa-s, we need Pa-s
    1771             : 
    1772             :     // Calculate the Reynold's number from RE=(4*Mdot)/(Pi*Mu*Diameter) - as RadiantSysLowTemp
    1773     4467317 :     ReD = 4.0 * MassFlowRate / (Constant::Pi * MUactual * Diameter);
    1774             : 
    1775     4467317 :     if (ReD == 0.0) { // No flow
    1776             : 
    1777             :         // For now just leave it how it was doing it before
    1778     1938541 :         NuD = 3.66;
    1779             :         // Although later it would be nice to have a natural convection correlation
    1780             : 
    1781             :     } else { // Calculate the Nusselt number based on what flow regime one is in
    1782             : 
    1783     2528776 :         if (ReD >= MaxLaminarRe) { // Turbulent flow --> use Colburn equation
    1784     2528776 :             NuD = 0.023 * std::pow(ReD, 0.8) * std::pow(PRactual, 1.0 / 3.0);
    1785             :         } else { // Laminar flow --> use constant surface temperature relation
    1786           0 :             NuD = 3.66;
    1787             :         }
    1788             :     }
    1789             : 
    1790     4467317 :     CalcPipeHeatTransCoef = Kactual * NuD / Diameter;
    1791             : 
    1792     4467317 :     return CalcPipeHeatTransCoef;
    1793             : }
    1794             : 
    1795             : //==============================================================================
    1796             : 
    1797      558537 : Real64 PipeHTData::OutsidePipeHeatTransCoef(EnergyPlusData &state)
    1798             : {
    1799             : 
    1800             :     // FUNCTION INFORMATION:
    1801             :     //       AUTHOR         Dan Fisher
    1802             :     //       DATE WRITTEN   July 2007
    1803             :     //       MODIFIED       na
    1804             :     //       RE-ENGINEERED  na
    1805             : 
    1806             :     // PURPOSE OF THIS SUBROUTINE:
    1807             :     // This subroutine calculates the convection heat transfer
    1808             :     // coefficient for a cylinder in cross flow.
    1809             : 
    1810             :     // REFERENCES:
    1811             :     // Fundamentals of Heat and Mass Transfer: Incropera and DeWitt, 4th ed.
    1812             :     // p. 369-370 (Eq. 7:55b)
    1813             : 
    1814             :     // Using/Aliasing
    1815             :     using ScheduleManager::GetCurrentScheduleValue;
    1816             : 
    1817             :     // Return value
    1818             :     Real64 OutsidePipeHeatTransCoef;
    1819             : 
    1820             :     // SUBROUTINE PARAMETER DEFINITIONS:
    1821      558537 :     Real64 constexpr Pr(0.7);           // Prandl number for air (assume constant)
    1822      558537 :     Real64 constexpr CondAir(0.025);    // thermal conductivity of air (assume constant) [W/m.K]
    1823      558537 :     Real64 constexpr RoomAirVel(0.381); // room air velocity of 75 ft./min [m/s]
    1824      558537 :     Real64 constexpr NaturalConvNusselt(0.36);
    1825             :     // Nusselt for natural convection for horizontal cylinder
    1826             :     // from: Correlations for Convective Heat Transfer
    1827             :     //      Dr. Bernhard Spang
    1828             :     //      Chemical Engineers' Resource Page: http://www.cheresources.com/convection.pdf
    1829      558537 :     int constexpr NumOfParamDivisions(5); // intervals in property correlation
    1830      558537 :     int constexpr NumOfPropDivisions(12); // intervals in property correlation
    1831             : 
    1832             :     static constexpr std::array<Real64, NumOfParamDivisions> CCoef = {0.989, 0.911, 0.683, 0.193, 0.027};         // correlation coefficient
    1833             :     static constexpr std::array<Real64, NumOfParamDivisions> mExp = {0.33, 0.385, 0.466, 0.618, 0.805};           // exponent
    1834             :     static constexpr std::array<Real64, NumOfParamDivisions> UpperBound = {4.0, 40.0, 4000.0, 40000.0, 400000.0}; // upper bound of correlation range
    1835             :     static constexpr std::array<Real64, NumOfPropDivisions> Temperature = {
    1836             :         -73.0, -23.0, -10.0, 0.0, 10.0, 20.0, 27.0, 30.0, 40.0, 50.0, 76.85, 126.85}; // temperature [C]
    1837             :     static constexpr std::array<Real64, NumOfPropDivisions> DynVisc = {
    1838             :         75.52e-7, 11.37e-6, 12.44e-6, 13.3e-6, 14.18e-6, 15.08e-6, 15.75e-6, 16e-6, 16.95e-6, 17.91e-6, 20.92e-6, 26.41e-6}; // dynamic
    1839             :     // viscosity
    1840             :     // [m^2/s]
    1841             : 
    1842             :     // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
    1843             :     int idx;
    1844             :     Real64 NuD;
    1845             :     Real64 ReD;
    1846             :     Real64 Coef;
    1847             :     Real64 rExp;
    1848             :     Real64 AirVisc;
    1849             :     Real64 AirVel;
    1850             :     Real64 AirTemp;
    1851             :     Real64 PipeOD;
    1852             :     bool ViscositySet;
    1853             :     bool CoefSet;
    1854             : 
    1855             :     // Set environmental variables
    1856      558537 :     switch (this->Type) {
    1857      372358 :     case DataPlant::PlantEquipmentType::PipeInterior: {
    1858      372358 :         switch (this->EnvironmentPtr) {
    1859      186179 :         case EnvrnPtr::ScheduleEnv: {
    1860      186179 :             AirTemp = GetCurrentScheduleValue(state, this->EnvrSchedPtr);
    1861      186179 :             AirVel = GetCurrentScheduleValue(state, this->EnvrVelSchedPtr);
    1862      186179 :         } break;
    1863      186179 :         case EnvrnPtr::ZoneEnv: {
    1864      186179 :             AirTemp = state.dataZoneTempPredictorCorrector->zoneHeatBalance(this->EnvrZonePtr).MAT;
    1865      186179 :             AirVel = RoomAirVel;
    1866      186179 :         } break;
    1867           0 :         default:
    1868           0 :             break;
    1869             :         }
    1870      372358 :     } break;
    1871      186179 :     case DataPlant::PlantEquipmentType::PipeExterior: {
    1872      186179 :         switch (this->EnvironmentPtr) {
    1873      186179 :         case EnvrnPtr::OutsideAirEnv: {
    1874      186179 :             AirTemp = state.dataLoopNodes->Node(this->EnvrAirNodeNum).Temp;
    1875      186179 :             AirVel = state.dataEnvrn->WindSpeed;
    1876      186179 :         } break;
    1877           0 :         default:
    1878           0 :             break;
    1879             :         }
    1880      186179 :     } break;
    1881           0 :     default:
    1882           0 :         break;
    1883             :     }
    1884             : 
    1885      558537 :     PipeOD = this->InsulationOD;
    1886             : 
    1887      558537 :     ViscositySet = false;
    1888     3702653 :     for (idx = 0; idx < NumOfPropDivisions; ++idx) {
    1889     3702653 :         if (AirTemp <= Temperature[idx]) {
    1890      558537 :             AirVisc = DynVisc[idx];
    1891      558537 :             ViscositySet = true;
    1892      558537 :             break;
    1893             :         }
    1894             :     }
    1895             : 
    1896      558537 :     if (!ViscositySet) {
    1897           0 :         AirVisc = DynVisc[NumOfPropDivisions - 1];
    1898           0 :         if (AirTemp > Temperature[NumOfPropDivisions - 1]) {
    1899           0 :             ShowWarningError(state,
    1900           0 :                              format("Heat Transfer Pipe = {}Viscosity out of range, air temperature too high, setting to upper limit.", this->Name));
    1901             :         }
    1902             :     }
    1903             : 
    1904             :     // Calculate the Reynold's number
    1905      558537 :     CoefSet = false;
    1906      558537 :     if (AirVisc > 0.0) {
    1907      558537 :         ReD = AirVel * PipeOD / (AirVisc);
    1908             :     }
    1909             : 
    1910     2212153 :     for (idx = 0; idx < NumOfParamDivisions; ++idx) {
    1911     2212153 :         if (ReD <= UpperBound[idx]) {
    1912      558537 :             Coef = CCoef[idx];
    1913      558537 :             rExp = mExp[idx];
    1914      558537 :             CoefSet = true;
    1915      558537 :             break;
    1916             :         }
    1917             :     }
    1918             : 
    1919      558537 :     if (!CoefSet) {
    1920           0 :         Coef = CCoef[NumOfParamDivisions - 1];
    1921           0 :         rExp = mExp[NumOfParamDivisions - 1];
    1922           0 :         if (ReD > UpperBound[NumOfParamDivisions - 1]) {
    1923           0 :             ShowWarningError(state, format("Heat Transfer Pipe = {}Reynolds Number out of range, setting coefficients to upper limit.", this->Name));
    1924             :         }
    1925             :     }
    1926             : 
    1927             :     // Calculate the Nusselt number
    1928      558537 :     NuD = Coef * std::pow(ReD, rExp) * std::pow(Pr, 1.0 / 3.0);
    1929             : 
    1930             :     // If the wind speed is too small, we need to use natural convection behavior:
    1931      558537 :     NuD = max(NuD, NaturalConvNusselt);
    1932             : 
    1933             :     // h = (k)(Nu)/D
    1934      558537 :     OutsidePipeHeatTransCoef = CondAir * NuD / PipeOD;
    1935             : 
    1936      558537 :     return OutsidePipeHeatTransCoef;
    1937             : }
    1938             : 
    1939             : //==============================================================================
    1940             : 
    1941     1316400 : Real64 PipeHTData::TBND(EnergyPlusData &state,
    1942             :                         Real64 const z // Current Depth
    1943             : )
    1944             : {
    1945             : 
    1946             :     //       AUTHOR         Edwin Lee
    1947             :     //       DATE WRITTEN   December 2007
    1948             :     //       MODIFIED       na
    1949             :     //       RE-ENGINEERED  na
    1950             : 
    1951             :     // PURPOSE OF THIS FUNCTION:
    1952             :     // Returns a temperature to be used on the boundary of the buried pipe model domain
    1953             : 
    1954             :     // METHODOLOGY EMPLOYED:
    1955             : 
    1956             :     // REFERENCES: See Module Level Description
    1957             : 
    1958             :     // Using/Aliasing
    1959     1316400 :     Real64 curSimTime = state.dataGlobal->DayOfSim * Constant::SecsInDay;
    1960             :     Real64 TBND;
    1961             : 
    1962     1316400 :     TBND = this->groundTempModel->getGroundTempAtTimeInSeconds(state, z, curSimTime);
    1963             : 
    1964     1316400 :     return TBND;
    1965             : }
    1966             : 
    1967           0 : void PipeHTData::oneTimeInit([[maybe_unused]] EnergyPlusData &state)
    1968             : {
    1969           0 : }
    1970             : 
    1971             : //===============================================================================
    1972             : 
    1973             : //===============================================================================
    1974             : 
    1975             : } // namespace EnergyPlus::PipeHeatTransfer

Generated by: LCOV version 1.14