Line data Source code
1 : // EnergyPlus, Copyright (c) 1996-2024, The Board of Trustees of the University of Illinois,
2 : // The Regents of the University of California, through Lawrence Berkeley National Laboratory
3 : // (subject to receipt of any required approvals from the U.S. Dept. of Energy), Oak Ridge
4 : // National Laboratory, managed by UT-Battelle, Alliance for Sustainable Energy, LLC, and other
5 : // contributors. All rights reserved.
6 : //
7 : // NOTICE: This Software was developed under funding from the U.S. Department of Energy and the
8 : // U.S. Government consequently retains certain rights. As such, the U.S. Government has been
9 : // granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
10 : // worldwide license in the Software to reproduce, distribute copies to the public, prepare
11 : // derivative works, and perform publicly and display publicly, and to permit others to do so.
12 : //
13 : // Redistribution and use in source and binary forms, with or without modification, are permitted
14 : // provided that the following conditions are met:
15 : //
16 : // (1) Redistributions of source code must retain the above copyright notice, this list of
17 : // conditions and the following disclaimer.
18 : //
19 : // (2) Redistributions in binary form must reproduce the above copyright notice, this list of
20 : // conditions and the following disclaimer in the documentation and/or other materials
21 : // provided with the distribution.
22 : //
23 : // (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
24 : // the University of Illinois, U.S. Dept. of Energy nor the names of its contributors may be
25 : // used to endorse or promote products derived from this software without specific prior
26 : // written permission.
27 : //
28 : // (4) Use of EnergyPlus(TM) Name. If Licensee (i) distributes the software in stand-alone form
29 : // without changes from the version obtained under this License, or (ii) Licensee makes a
30 : // reference solely to the software portion of its product, Licensee must refer to the
31 : // software as "EnergyPlus version X" software, where "X" is the version number Licensee
32 : // obtained under this License and may not use a different name for the software. Except as
33 : // specifically required in this Section (4), Licensee shall not use in a company name, a
34 : // product name, in advertising, publicity, or other promotional activities any name, trade
35 : // name, trademark, logo, or other designation of "EnergyPlus", "E+", "e+" or confusingly
36 : // similar designation, without the U.S. Department of Energy's prior written consent.
37 : //
38 : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
39 : // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
40 : // AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
41 : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
42 : // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
43 : // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44 : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
45 : // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
46 : // POSSIBILITY OF SUCH DAMAGE.
47 :
48 : #ifndef PlantChillers_hh_INCLUDED
49 : #define PlantChillers_hh_INCLUDED
50 :
51 : // ObjexxFCL Headers
52 : #include <ObjexxFCL/Array1D.hh>
53 :
54 : // EnergyPlus Headers
55 : #include <EnergyPlus/Data/BaseData.hh>
56 : #include <EnergyPlus/DataBranchAirLoopPlant.hh>
57 : #include <EnergyPlus/DataGlobalConstants.hh>
58 : #include <EnergyPlus/DataGlobals.hh>
59 : #include <EnergyPlus/EnergyPlus.hh>
60 : #include <EnergyPlus/Plant/DataPlant.hh>
61 : #include <EnergyPlus/PlantComponent.hh>
62 : #include <EnergyPlus/UtilityRoutines.hh>
63 :
64 : namespace EnergyPlus {
65 :
66 : // Forward declarations
67 : struct EnergyPlusData;
68 :
69 : namespace PlantChillers {
70 :
71 : struct BaseChillerSpecs : PlantComponent // NOTE: This base class is abstract, derived classes must override pure virtual methods
72 : {
73 : // Members
74 : std::string Name; // user identifier
75 : Real64 MinPartLoadRat; // (GT MIN) min allowed operating frac full load
76 : Real64 MaxPartLoadRat; // (GT MAX) max allowed operating frac full load
77 : Real64 OptPartLoadRat; // (GT BEST) optimal operating frac full load
78 : Real64 TempDesCondIn; // C - (GT ADJTC(1)The design secondary loop fluid
79 : // temperature at the chiller condenser side inlet
80 : Real64 TempRiseCoef; // (GT ADJTC(2)) correction factor for off ChillDesign oper.
81 : Real64 TempDesEvapOut; // C - (GT ADJTC(3)The design primary loop fluid
82 : DataPlant::CondenserType CondenserType; // Type of Condenser - Air or Water Cooled
83 : Real64 NomCap; // design nominal capacity of chiller
84 : bool NomCapWasAutoSized; // true if NomCap was autosize on input
85 : Real64 COP; // COP
86 : DataPlant::FlowMode FlowMode; // one of 3 modes for component flow during operation
87 : bool ModulatedFlowSetToLoop; // True if the setpoint is missing at the outlet node
88 : bool ModulatedFlowErrDone; // true if setpoint warning issued
89 : bool HRSPErrDone; // TRUE if set point warning issued for heat recovery loop
90 : int EvapInletNodeNum; // Node number on the inlet side of the plant
91 : int EvapOutletNodeNum; // Node number on the outlet side of the plant
92 : int CondInletNodeNum; // Node number on the inlet side of the condenser
93 : int CondOutletNodeNum; // Node number on the outlet side of the condenser
94 : Real64 EvapVolFlowRate; // m**3/s - design nominal water volumetric flow rate through the evaporator
95 : bool EvapVolFlowRateWasAutoSized; // true if autosized design evap flow rate on input
96 : Real64 EvapMassFlowRateMax; // kg/s - design water mass flow rate through evaporator
97 : Real64 CondVolFlowRate; // m**3/s - design nominal water volumetric flow rate through the condenser
98 : bool CondVolFlowRateWasAutoSized; // true if previous was autosized
99 : Real64 CondMassFlowRateMax; // kg/s - design water mass flow rate through condenser
100 : PlantLocation CWPlantLoc; // chilled water plant loop component index
101 : PlantLocation CDPlantLoc; // condenser water plant loop component index
102 : Real64 SizFac; // sizing factor
103 : Real64 BasinHeaterPowerFTempDiff; // Basin heater capacity per degree C below setpoint (W/C)
104 : Real64 BasinHeaterSetPointTemp; // Setpoint temperature for basin heater operation (C)
105 : int BasinHeaterSchedulePtr; // Pointer to basin heater schedule
106 : int ErrCount1; // for recurring error messages
107 : int ErrCount2; // for recurring error messages
108 : std::string MsgBuffer1; // - buffer to print warning messages on following time step
109 : std::string MsgBuffer2; // - buffer to print warning messages on following time step
110 : Real64 MsgDataLast; // value of data when warning occurred (passed to Recurring Warn)
111 : bool PrintMessage; // logical to determine if message is valid
112 : int MsgErrorCount; // number of occurrences of warning
113 : bool CheckEquipName;
114 : bool PossibleSubcooling; // flag to indicate chiller is doing less cooling that requested
115 : int CondMassFlowIndex;
116 : // Operational fault parameters
117 : bool FaultyChillerSWTFlag; // True if the chiller has SWT sensor fault
118 : int FaultyChillerSWTIndex; // Index of the fault object corresponding to the chiller
119 : Real64 FaultyChillerSWTOffset; // Chiller SWT sensor offset
120 : bool FaultyChillerFoulingFlag; // True if the chiller has fouling fault
121 : int FaultyChillerFoulingIndex; // Index of the fault object corresponding to the chiller
122 : Real64 FaultyChillerFoulingFactor; // Chiller fouling factor
123 : bool MyFlag;
124 : bool MyEnvrnFlag;
125 : Real64 TimeStepSysLast;
126 : Real64 CurrentEndTimeLast;
127 : Real64 CondMassFlowRate; // Kg/s - condenser mass flow rate, water side
128 : Real64 EvapMassFlowRate; // Kg/s - evaporator mass flow rate, water side
129 : Real64 CondOutletTemp; // C - condenser outlet temperature, air or water side
130 : Real64 EvapOutletTemp; // C - evaporator outlet temperature, water side
131 : Real64 QEvaporator; // W - rate of heat transfer to the evaporator coil
132 : Real64 QCondenser; // W - rate of heat transfer to the condenser coil
133 : Real64 Energy; // J - chiller energy use
134 : Real64 EvaporatorEnergy; // J - rate of heat transfer to the evaporator coil
135 : Real64 CondenserEnergy; // J - rate of heat transfer to the condenser coil
136 : Real64 QHeatRecovered; // W - rate of heat transfer to the Heat Recovery coil
137 : Real64 HeatRecOutletTemp; // C - Heat Rec outlet temperature, water side
138 : Real64 AvgCondSinkTemp; // condenser temperature value for use in curves [C]
139 : Real64 BasinHeaterPower; // Basin heater power (W)
140 : Real64 Power;
141 : Real64 CondInletTemp;
142 : Real64 EvapInletTemp;
143 : Real64 BasinHeaterConsumption; // Basin heater energy consumption (J)
144 : DataPlant::PlantEquipmentType ChillerType;
145 :
146 : // Default Constructor
147 642 : BaseChillerSpecs()
148 1284 : : MinPartLoadRat(0.0), MaxPartLoadRat(1.0), OptPartLoadRat(1.0), TempDesCondIn(0.0), TempRiseCoef(0.0), TempDesEvapOut(0.0),
149 642 : CondenserType(DataPlant::CondenserType::WaterCooled), NomCap(0.0), NomCapWasAutoSized(false), COP(0.0),
150 642 : FlowMode(DataPlant::FlowMode::Invalid), ModulatedFlowSetToLoop(false), ModulatedFlowErrDone(false), HRSPErrDone(false),
151 642 : EvapInletNodeNum(0), EvapOutletNodeNum(0), CondInletNodeNum(0), CondOutletNodeNum(0), EvapVolFlowRate(0.0),
152 642 : EvapVolFlowRateWasAutoSized(false), EvapMassFlowRateMax(0.0), CondVolFlowRate(0.0), CondVolFlowRateWasAutoSized(false),
153 642 : CondMassFlowRateMax(0.0), CWPlantLoc{}, CDPlantLoc{}, SizFac(0.0), BasinHeaterPowerFTempDiff(0.0), BasinHeaterSetPointTemp(0.0),
154 1284 : BasinHeaterSchedulePtr(0), ErrCount1(0), ErrCount2(0), MsgDataLast(0.0), PrintMessage(false), MsgErrorCount(0), CheckEquipName(true),
155 642 : PossibleSubcooling(false), CondMassFlowIndex(0), FaultyChillerSWTFlag(false), FaultyChillerSWTIndex(0), FaultyChillerSWTOffset(0.0),
156 642 : FaultyChillerFoulingFlag(false), FaultyChillerFoulingIndex(0), FaultyChillerFoulingFactor(1.0), MyFlag(true), MyEnvrnFlag(true),
157 642 : TimeStepSysLast(0.0), CurrentEndTimeLast(0.0), CondMassFlowRate(0.0), EvapMassFlowRate(0.0), CondOutletTemp(0.0),
158 642 : EvapOutletTemp(0.0), // C - evaporator outlet temperature, water side
159 642 : QEvaporator(0.0), // W - rate of heat transfer to the evaporator coil
160 642 : QCondenser(0.0), // W - rate of heat transfer to the condenser coil
161 642 : Energy(0.0), // J - chiller energy use
162 642 : EvaporatorEnergy(0.0), // J - rate of heat transfer to the evaporator coil
163 642 : CondenserEnergy(0.0), // J - rate of heat transfer to the condenser coil
164 642 : QHeatRecovered(0.0), // W - rate of heat transfer to the Heat Recovery coil
165 642 : HeatRecOutletTemp(0.0), // C - Heat Rec outlet temperature, water side
166 642 : AvgCondSinkTemp(0.0), // condenser temperature value for use in curves [C]
167 642 : BasinHeaterPower(0.0), // Basin heater power (W)
168 1284 : Power(0.0), CondInletTemp(0.0), EvapInletTemp(0.0), BasinHeaterConsumption(0.0), ChillerType(DataPlant::PlantEquipmentType::Invalid)
169 :
170 : {
171 642 : }
172 :
173 : void getDesignCapacities(EnergyPlusData &state,
174 : [[maybe_unused]] const PlantLocation &calledFromLocation,
175 : [[maybe_unused]] Real64 &MaxLoad,
176 : [[maybe_unused]] Real64 &MinLoad,
177 : [[maybe_unused]] Real64 &OptLoad) override;
178 :
179 : void getSizingFactor([[maybe_unused]] Real64 &SizFac) override;
180 :
181 : void onInitLoopEquip([[maybe_unused]] EnergyPlusData &state, [[maybe_unused]] const PlantLocation &calledFromLocation) override;
182 :
183 : void getDesignTemperatures([[maybe_unused]] Real64 &TempDesCondIn, [[maybe_unused]] Real64 &TempDesEvapOut) override;
184 :
185 : virtual void initialize(EnergyPlusData &state, bool RunFlag, Real64 MyLoad) = 0;
186 :
187 : virtual void size(EnergyPlusData &state) = 0;
188 : };
189 :
190 : struct ElectricChillerSpecs : BaseChillerSpecs
191 : {
192 : // Members
193 : // temperature at the chiller evaporator side outlet
194 : Array1D<Real64> CapRatCoef; // (Electric RCAVC() ) coeff of cap ratio poly fit
195 : Array1D<Real64> PowerRatCoef; // (Electric ADJEC() ) coeff of power rat poly fit
196 : Array1D<Real64> FullLoadCoef; // (Electric RPWRC() ) coeff of full load poly. fit
197 : Real64 TempLowLimitEvapOut; // C - low temperature shut off
198 : Real64 DesignHeatRecVolFlowRate; // m3/s, Design Water mass flow rate through heat recovery loop
199 : bool DesignHeatRecVolFlowRateWasAutoSized; // true if previous was input autosize.
200 : Real64 DesignHeatRecMassFlowRate; // kg/s, Design Water mass flow rate through heat recovery loop
201 : bool HeatRecActive; // True entered Heat Rec Vol Flow Rate >0
202 : int HeatRecInletNodeNum; // Node number on the heat recovery inlet side of the condenser
203 : int HeatRecOutletNodeNum; // Node number on the heat recovery outlet side of the condenser
204 : Real64 HeatRecCapacityFraction; // user input for heat recovery capacity fraction []
205 : Real64 HeatRecMaxCapacityLimit; // Capacity limit for Heat recovery, one time calc [W]
206 : int HeatRecSetPointNodeNum; // index for system node with the heat recover leaving setpoint
207 : int HeatRecInletLimitSchedNum; // index for schedule for the inlet high limit for heat recovery operation
208 : PlantLocation HRPlantLoc; // heat recovery water plant loop component index
209 : std::string EndUseSubcategory; // identifier use for the end use subcategory
210 : Real64 CondOutletHumRat; // kg/kg - condenser outlet humditiy ratio, air side
211 : Real64 ActualCOP;
212 : Real64 QHeatRecovery;
213 : Real64 EnergyHeatRecovery;
214 : Real64 HeatRecInletTemp; // (HeatRecOutletTemp is in base already)
215 : Real64 HeatRecMdot;
216 : Real64 ChillerCondAvgTemp; // the effective condenser temperature for chiller performance [C]
217 : Real64 partLoadRatio = 0.0;
218 : Real64 cyclingRatio = 0.0;
219 :
220 : // thermosiphon model
221 : int thermosiphonTempCurveIndex = 0;
222 : Real64 thermosiphonMinTempDiff = 0.0;
223 : int thermosiphonStatus = 0;
224 :
225 : // Default Constructor
226 426 : ElectricChillerSpecs()
227 426 : : CapRatCoef(3, 0.0), PowerRatCoef(3, 0.0), FullLoadCoef(3, 0.0), TempLowLimitEvapOut(0.0), DesignHeatRecVolFlowRate(0.0),
228 426 : DesignHeatRecVolFlowRateWasAutoSized(false), DesignHeatRecMassFlowRate(0.0), HeatRecActive(false), HeatRecInletNodeNum(0),
229 426 : HeatRecOutletNodeNum(0), HeatRecCapacityFraction(0.0), HeatRecMaxCapacityLimit(0.0), HeatRecSetPointNodeNum(0),
230 426 : HeatRecInletLimitSchedNum(0), HRPlantLoc{}, CondOutletHumRat(0.0), ActualCOP(0.0), QHeatRecovery(0.0), EnergyHeatRecovery(0.0),
231 852 : HeatRecInletTemp(0.0), HeatRecMdot(0.0), ChillerCondAvgTemp(0.0)
232 : {
233 426 : }
234 :
235 : static void getInput(EnergyPlusData &state);
236 :
237 : void setupOutputVariables(EnergyPlusData &state);
238 :
239 : static ElectricChillerSpecs *factory(EnergyPlusData &state, std::string const &chillerName);
240 :
241 : void simulate([[maybe_unused]] EnergyPlusData &state,
242 : const PlantLocation &calledFromLocation,
243 : bool FirstHVACIteration,
244 : Real64 &CurLoad,
245 : bool RunFlag) override;
246 :
247 : void initialize(EnergyPlusData &state, bool RunFlag, Real64 MyLoad) override;
248 :
249 : void size(EnergyPlusData &state) override;
250 :
251 : void calculate(EnergyPlusData &state,
252 : Real64 &MyLoad, // operating load
253 : bool RunFlag, // TRUE when chiller operating
254 : DataBranchAirLoopPlant::ControlType EquipFlowCtrl // Flow control mode for the equipment
255 : );
256 :
257 : void update(EnergyPlusData &state,
258 : Real64 MyLoad, // current load
259 : bool RunFlag // TRUE if chiller operating
260 : );
261 :
262 : void calcHeatRecovery(EnergyPlusData &state,
263 : Real64 &QCond, // current condenser load
264 : Real64 CondMassFlow, // current condenser Mass Flow
265 : Real64 condInletTemp, // current condenser Inlet Temp
266 : Real64 &QHeatRec // amount of heat recovered
267 : );
268 :
269 : void oneTimeInit(EnergyPlusData &state) override;
270 :
271 : bool thermosiphonDisabled(EnergyPlusData &state);
272 : };
273 :
274 : struct EngineDrivenChillerSpecs : BaseChillerSpecs
275 : {
276 : // temperature at the chiller evaporator side outlet
277 : Constant::eFuel FuelType = Constant::eFuel::Invalid;
278 : Array1D<Real64> CapRatCoef; // (EngineDriven RCAVC() ) coeff of cap ratio poly fit
279 : Array1D<Real64> PowerRatCoef; // (EngineDriven ADJEC() ) coeff of power rat poly fit
280 : Array1D<Real64> FullLoadCoef; // (EngineDriven RPWRC() ) coeff of full load poly. fit
281 : Real64 TempLowLimitEvapOut; // C - low temperature shut off
282 : int ClngLoadtoFuelCurve; // Coeff of Shaft Power to Fuel Energy Input Coeff Poly Fit
283 : int RecJacHeattoFuelCurve; // Curve Index for Ratio of Recoverable Jacket Heat to
284 : int RecLubeHeattoFuelCurve; // Curve Index for Ratio of Recoverable Lube Oil Heat to
285 : int TotExhausttoFuelCurve; // Curve Index for Total Exhaust heat Input to Fuel Energy Input Coeffs Poly Fit
286 : Real64 ExhaustTemp; // (TEXDC) Exhaust Gas Temp to Fuel Energy Input
287 : int ExhaustTempCurve; // Curve Index for Exhaust Gas Temp to Fuel Energy Input Coeffs Poly Fit
288 : Real64 UA; // (UACDC) exhaust gas Heat Exchanger UA to Capacity
289 : Array1D<Real64> UACoef; // Heat Exchanger UA Coeffs Poly Fit
290 : Real64 MaxExhaustperPowerOutput; // MAX EXHAUST FLOW PER W DSL POWER OUTPUT COEFF
291 : Real64 DesignMinExitGasTemp; // Steam Saturation Temperature
292 : Real64 FuelHeatingValue; // Heating Value of Fuel in kJ/kg
293 : Real64 DesignHeatRecVolFlowRate; // m3/s, Design Water mass flow rate through heat recovery loop
294 : bool DesignHeatRecVolFlowRateWasAutoSized; // true if user input was autosize for heat recover design flow rate
295 : Real64 DesignHeatRecMassFlowRate; // kg/s, Design Water mass flow rate through heat recovery loop
296 : bool HeatRecActive; // True entered Heat Rec Vol Flow Rate >0
297 : int HeatRecInletNodeNum; // Node number on the heat recovery inlet side of the condenser
298 : int HeatRecOutletNodeNum; // Node number on the heat recovery outlet side of the condenser
299 : Real64 HeatRecCapacityFraction; // user input for heat recovery capacity fraction []
300 : Real64 HeatRecMaxTemp; // Max Temp that can be produced in heat recovery
301 : PlantLocation HRPlantLoc; // heat recovery water plant loop component index
302 :
303 : // engine driven:
304 : Real64 HeatRecInletTemp; // Inlet Temperature of the heat recovery fluid
305 : Real64 HeatRecMdotActual; // Heat Recovery Loop Mass flow rate
306 : Real64 QTotalHeatRecovered; // total heat recovered (W)
307 : Real64 QJacketRecovered; // heat recovered from jacket (W)
308 : Real64 QLubeOilRecovered; // heat recovered from lube (W)
309 : Real64 QExhaustRecovered; // exhaust gas heat recovered (W)
310 : Real64 FuelEnergyUseRate; // Fuel Energy used (W)
311 : Real64 TotalHeatEnergyRec; // total heat recovered (J)
312 : Real64 JacketEnergyRec; // heat recovered from jacket (J)
313 : Real64 LubeOilEnergyRec; // heat recovered from lube (J)
314 : Real64 ExhaustEnergyRec; // exhaust gas heat recovered (J)
315 : Real64 FuelEnergy; // Fuel Energy used (J)
316 : Real64 FuelMdot; // Fuel Amount used (Kg/s)
317 : Real64 ExhaustStackTemp; // Exhaust Stack Temperature (C)
318 :
319 : Real64 HeatRecMdot; // Heat Recovery Loop Mass flow rate (kg/s)
320 : Real64 FuelCOP; // Fuel COP [delivered cooling rate/fuel energy input rate] (W/W)
321 :
322 : // Default Constructor
323 24 : EngineDrivenChillerSpecs()
324 24 : : CapRatCoef(3, 0.0), PowerRatCoef(3, 0.0), FullLoadCoef(3, 0.0), TempLowLimitEvapOut(0.0), ClngLoadtoFuelCurve(0),
325 24 : RecJacHeattoFuelCurve(0), RecLubeHeattoFuelCurve(0), TotExhausttoFuelCurve(0), ExhaustTemp(0.0), ExhaustTempCurve(0), UA(0.0),
326 24 : UACoef(2, 0.0), MaxExhaustperPowerOutput(0.0), DesignMinExitGasTemp(0.0), FuelHeatingValue(0.0), DesignHeatRecVolFlowRate(0.0),
327 24 : DesignHeatRecVolFlowRateWasAutoSized(false), DesignHeatRecMassFlowRate(0.0), HeatRecActive(false), HeatRecInletNodeNum(0),
328 24 : HeatRecOutletNodeNum(0), HeatRecCapacityFraction(0.0), HeatRecMaxTemp(0.0), HRPlantLoc{}, HeatRecInletTemp(0.0), HeatRecMdotActual(0.0),
329 24 : QTotalHeatRecovered(0.0), QJacketRecovered(0.0),
330 :
331 : // engine driven:
332 24 : QLubeOilRecovered(0.0), QExhaustRecovered(0.0), FuelEnergyUseRate(0.0), TotalHeatEnergyRec(0.0), JacketEnergyRec(0.0),
333 24 : LubeOilEnergyRec(0.0), ExhaustEnergyRec(0.0), FuelEnergy(0.0), FuelMdot(0.0), ExhaustStackTemp(0.0), HeatRecMdot(0.0), FuelCOP(0.0)
334 : {
335 24 : }
336 :
337 : static EngineDrivenChillerSpecs *factory(EnergyPlusData &state, std::string const &chillerName);
338 :
339 : static void getInput(EnergyPlusData &state);
340 :
341 : void simulate([[maybe_unused]] EnergyPlusData &state,
342 : const PlantLocation &calledFromLocation,
343 : bool FirstHVACIteration,
344 : Real64 &CurLoad,
345 : bool RunFlag) override;
346 :
347 : void setupOutputVariables(EnergyPlusData &state);
348 :
349 : void initialize(EnergyPlusData &state, bool RunFlag, Real64 MyLoad) override;
350 :
351 : void size(EnergyPlusData &state) override;
352 :
353 : void calculate(EnergyPlusData &state,
354 : Real64 &MyLoad, // operating load
355 : bool RunFlag, // TRUE when chiller operating
356 : DataBranchAirLoopPlant::ControlType EquipFlowCtrl // Flow control mode for the equipment
357 : );
358 :
359 : void calcHeatRecovery(EnergyPlusData &state,
360 : Real64 EnergyRecovered, // Amount of heat recovered
361 : Real64 &HeatRecRatio // Max Heat recovery ratio
362 : );
363 :
364 : void update(EnergyPlusData &state,
365 : Real64 MyLoad, // current load
366 : bool RunFlag // TRUE if chiller operating
367 : );
368 :
369 : void oneTimeInit(EnergyPlusData &state) override;
370 : };
371 :
372 : struct GTChillerSpecs : BaseChillerSpecs
373 : {
374 : // Members
375 : Constant::eFuel FuelType = Constant::eFuel::Invalid;
376 : Array1D<Real64> CapRatCoef; // (GT RCAVC() ) coeff of cap ratio poly fit
377 : Array1D<Real64> PowerRatCoef; // (GT ADJEC() ) coeff of power rat poly fit
378 : Array1D<Real64> FullLoadCoef; // (GT RPWRC() ) coeff of full load poly. fit
379 : Real64 TempLowLimitEvapOut; // C - low temperature shut off
380 : // "special" GT chiller input parameters
381 : Real64 FuelEnergyIn; // (EFUEL) Amount of Fuel Energy Required to run gas turbine
382 : Array1D<Real64> PLBasedFuelInputCoef; // (FUL1GC) Part Load Ratio Based Fuel Input Coefficients Poly Fit
383 : Array1D<Real64> TempBasedFuelInputCoef; // (FUL2GC) Ambient Temperature Based Fuel Input Coeff Poly Fit
384 : Real64 ExhaustFlow; // (FEX) Exhaust Gas Flow Rate cubic meters per second
385 : Array1D<Real64> ExhaustFlowCoef; // (FEXGC) Exhaust Gas Flow Rate Input Coef Poly Fit
386 : Real64 ExhaustTemp; // (TEX) Exhaust Gas Temperature in C
387 : Array1D<Real64> PLBasedExhaustTempCoef; // (TEX1GC) Part Load Ratio Based Exhaust Temperature Input Coeffs Poly Fit
388 : Array1D<Real64> TempBasedExhaustTempCoef; // (TEX2GC) Ambient Temperature Based Exhaust Gas Temp to
389 : // Fuel Energy Input Coeffs Poly Fit
390 : Real64 HeatRecLubeEnergy; // (ELUBE) Recoverable Lube Oil Energy
391 : Real64 HeatRecLubeRate; // (ELUBE) Recoverable Lube Oil Rate of Recovery (W)
392 : Array1D<Real64> HeatRecLubeEnergyCoef; // (ELUBEGC) Recoverable Lube Oil Energy Input Coef Poly Fit
393 : Real64 UAtoCapRat; // (UACGC) Heat Exchanger UA to Capacity
394 : Array1D<Real64> UAtoCapCoef; // Heat Exchanger UA to Capacity Coeffs Poly Fit
395 : Real64 GTEngineCapacity; // Capacity of GT Unit attached to Chiller
396 : bool GTEngineCapacityWasAutoSized; // true if previous field was autosize on inpt
397 : Real64 MaxExhaustperGTPower; // Max Exhaust Flow per KW Power Out
398 : Real64 DesignSteamSatTemp; // Steam Saturation Temperature
399 : Real64 ExhaustStackTemp; // Temperature of Exhaust Gases
400 : int HeatRecInletNodeNum; // Node number on the heat recovery inlet side of the condenser
401 : int HeatRecOutletNodeNum; // Node number on the heat recovery outlet side of the condenser
402 : Real64 HeatRecInletTemp; // Inlet Temperature of the heat recovery fluid (HeatRecOutletTemp is in base already)
403 : Real64 HeatRecMdot; // Heat Recovery Loop Mass flow rate
404 : Real64 DesignHeatRecVolFlowRate; // m3/s, Design Water mass flow rate through heat recovery loop
405 : bool DesignHeatRecVolFlowRateWasAutoSized; // true if previous field was autosize on input
406 : Real64 DesignHeatRecMassFlowRate; // kg/s, Design Water mass flow rate through heat recovery loop
407 : bool HeatRecActive; // True entered Heat Rec Vol Flow Rate >0
408 : Real64 FuelHeatingValue; // Heating Value of Fuel in kJ/kg
409 : Real64 HeatRecCapacityFraction; // user input for heat recovery capacity fraction []
410 : Real64 engineCapacityScalar; // user input for engine efficiency for sizing GTEngineCapacity []
411 : Real64 HeatRecMaxTemp; // Max Temp that can be produced in heat recovery
412 : PlantLocation HRPlantLoc; // heat recovery water plant loop component index
413 :
414 : Real64 FuelEnergyUsed; // Fuel Energy used
415 : Real64 FuelEnergyUsedRate; // Fuel energy used rate (fuel consumption rate)
416 : Real64 FuelMassUsed; // Fuel Amount used
417 : Real64 FuelMassUsedRate; // Fuel amount used (fuel Mass consumption rate)
418 : Real64 FuelCOP; // Fuel coefficient of performance (Qevap/FuelEnergyUsedRate)
419 :
420 : // Default Constructor
421 4 : GTChillerSpecs()
422 4 : : CapRatCoef(3, 0.0), PowerRatCoef(3, 0.0), FullLoadCoef(3, 0.0), TempLowLimitEvapOut(0.0), FuelEnergyIn(0.0),
423 4 : PLBasedFuelInputCoef(3, 0.0), TempBasedFuelInputCoef(3, 0.0), ExhaustFlow(0.0), ExhaustFlowCoef(3, 0.0), ExhaustTemp(0.0),
424 4 : PLBasedExhaustTempCoef(3, 0.0), TempBasedExhaustTempCoef(3, 0.0), HeatRecLubeEnergy(0.0), HeatRecLubeRate(0.0),
425 4 : HeatRecLubeEnergyCoef(3, 0.0), UAtoCapRat(0.0), UAtoCapCoef(3, 0.0), GTEngineCapacity(0.0), GTEngineCapacityWasAutoSized(false),
426 4 : MaxExhaustperGTPower(0.0), DesignSteamSatTemp(0.0), ExhaustStackTemp(0.0), HeatRecInletNodeNum(0), HeatRecOutletNodeNum(0),
427 4 : HeatRecInletTemp(0.0), HeatRecMdot(0.0), DesignHeatRecVolFlowRate(0.0), DesignHeatRecVolFlowRateWasAutoSized(false),
428 4 : DesignHeatRecMassFlowRate(0.0), HeatRecActive(false), FuelHeatingValue(0.0), HeatRecCapacityFraction(0.0), engineCapacityScalar(0.35),
429 8 : HeatRecMaxTemp(0.0), HRPlantLoc{}, FuelEnergyUsed(0.0), FuelEnergyUsedRate(0.0), FuelMassUsed(0.0), FuelMassUsedRate(0.0), FuelCOP(0.0)
430 : {
431 4 : }
432 :
433 : static GTChillerSpecs *factory(EnergyPlusData &state, std::string const &chillerName);
434 :
435 : static void getInput(EnergyPlusData &state);
436 :
437 : void simulate([[maybe_unused]] EnergyPlusData &state,
438 : const PlantLocation &calledFromLocation,
439 : bool FirstHVACIteration,
440 : Real64 &CurLoad,
441 : bool RunFlag) override;
442 :
443 : void setupOutputVariables(EnergyPlusData &state);
444 :
445 : void initialize(EnergyPlusData &state, bool RunFlag, Real64 MyLoad) override;
446 :
447 : void size(EnergyPlusData &state) override;
448 :
449 : void calculate(EnergyPlusData &state,
450 : Real64 &MyLoad, // operating load
451 : bool RunFlag, // TRUE when chiller operating
452 : DataBranchAirLoopPlant::ControlType EquipFlowCtrl // Flow control mode for the equipment
453 : );
454 :
455 : void update(EnergyPlusData &state,
456 : Real64 MyLoad, // current load
457 : bool RunFlag // TRUE if chiller operating
458 : );
459 :
460 : void oneTimeInit(EnergyPlusData &state) override;
461 : };
462 :
463 : struct ConstCOPChillerSpecs : BaseChillerSpecs
464 : {
465 : // Members
466 : Real64 ActualCOP;
467 : Real64 partLoadRatio = 0.0;
468 : Real64 cyclingRatio = 1.0;
469 :
470 : // thermosiphon model
471 : int thermosiphonTempCurveIndex = 0;
472 : Real64 thermosiphonMinTempDiff = 0.0;
473 : int thermosiphonStatus = 0;
474 :
475 : // Default Constructor
476 188 : ConstCOPChillerSpecs() : ActualCOP(0.0)
477 : {
478 188 : }
479 :
480 : static ConstCOPChillerSpecs *factory(EnergyPlusData &state, std::string const &chillerName);
481 :
482 : static void getInput(EnergyPlusData &state);
483 :
484 : void simulate([[maybe_unused]] EnergyPlusData &state,
485 : const PlantLocation &calledFromLocation,
486 : bool FirstHVACIteration,
487 : Real64 &CurLoad,
488 : bool RunFlag) override;
489 :
490 : void setupOutputVariables(EnergyPlusData &state);
491 :
492 : void initialize(EnergyPlusData &state, bool RunFlag, Real64 MyLoad) override;
493 :
494 : void size(EnergyPlusData &state) override;
495 :
496 : void calculate(EnergyPlusData &state, Real64 &MyLoad, bool RunFlag, DataBranchAirLoopPlant::ControlType EquipFlowCtrl);
497 :
498 : void update(EnergyPlusData &state, Real64 MyLoad, bool RunFlag);
499 :
500 : void oneTimeInit(EnergyPlusData &state) override;
501 :
502 : bool thermosiphonDisabled(EnergyPlusData &state);
503 : };
504 : } // namespace PlantChillers
505 :
506 : struct PlantChillersData : BaseGlobalStruct
507 : {
508 :
509 : int NumElectricChillers = 0;
510 : int NumEngineDrivenChillers = 0;
511 : int NumGTChillers = 0;
512 : int NumConstCOPChillers = 0;
513 :
514 : bool GetEngineDrivenInput = true;
515 : bool GetElectricInput = true;
516 : bool GetGasTurbineInput = true;
517 : bool GetConstCOPInput = true;
518 :
519 : EPVector<PlantChillers::ElectricChillerSpecs> ElectricChiller;
520 : EPVector<PlantChillers::EngineDrivenChillerSpecs> EngineDrivenChiller;
521 : EPVector<PlantChillers::GTChillerSpecs> GTChiller;
522 : EPVector<PlantChillers::ConstCOPChillerSpecs> ConstCOPChiller;
523 :
524 796 : void init_state([[maybe_unused]] EnergyPlusData &state) override
525 : {
526 796 : }
527 :
528 0 : void clear_state() override
529 : {
530 0 : NumElectricChillers = 0;
531 0 : NumEngineDrivenChillers = 0;
532 0 : NumGTChillers = 0;
533 0 : NumConstCOPChillers = 0;
534 0 : GetEngineDrivenInput = true;
535 0 : GetElectricInput = true;
536 0 : GetGasTurbineInput = true;
537 0 : GetConstCOPInput = true;
538 0 : ElectricChiller.deallocate();
539 0 : EngineDrivenChiller.deallocate();
540 0 : GTChiller.deallocate();
541 0 : ConstCOPChiller.deallocate();
542 0 : }
543 : };
544 :
545 : } // namespace EnergyPlus
546 :
547 : #endif
|