LCOV - code coverage report
Current view: top level - EnergyPlus - PierceSurface.hh (source / functions) Hit Total Coverage
Test: lcov.output.filtered Lines: 62 147 42.2 %
Date: 2024-08-24 18:31:18 Functions: 1 3 33.3 %

          Line data    Source code
       1             : // EnergyPlus, Copyright (c) 1996-2024, The Board of Trustees of the University of Illinois,
       2             : // The Regents of the University of California, through Lawrence Berkeley National Laboratory
       3             : // (subject to receipt of any required approvals from the U.S. Dept. of Energy), Oak Ridge
       4             : // National Laboratory, managed by UT-Battelle, Alliance for Sustainable Energy, LLC, and other
       5             : // contributors. All rights reserved.
       6             : //
       7             : // NOTICE: This Software was developed under funding from the U.S. Department of Energy and the
       8             : // U.S. Government consequently retains certain rights. As such, the U.S. Government has been
       9             : // granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
      10             : // worldwide license in the Software to reproduce, distribute copies to the public, prepare
      11             : // derivative works, and perform publicly and display publicly, and to permit others to do so.
      12             : //
      13             : // Redistribution and use in source and binary forms, with or without modification, are permitted
      14             : // provided that the following conditions are met:
      15             : //
      16             : // (1) Redistributions of source code must retain the above copyright notice, this list of
      17             : //     conditions and the following disclaimer.
      18             : //
      19             : // (2) Redistributions in binary form must reproduce the above copyright notice, this list of
      20             : //     conditions and the following disclaimer in the documentation and/or other materials
      21             : //     provided with the distribution.
      22             : //
      23             : // (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
      24             : //     the University of Illinois, U.S. Dept. of Energy nor the names of its contributors may be
      25             : //     used to endorse or promote products derived from this software without specific prior
      26             : //     written permission.
      27             : //
      28             : // (4) Use of EnergyPlus(TM) Name. If Licensee (i) distributes the software in stand-alone form
      29             : //     without changes from the version obtained under this License, or (ii) Licensee makes a
      30             : //     reference solely to the software portion of its product, Licensee must refer to the
      31             : //     software as "EnergyPlus version X" software, where "X" is the version number Licensee
      32             : //     obtained under this License and may not use a different name for the software. Except as
      33             : //     specifically required in this Section (4), Licensee shall not use in a company name, a
      34             : //     product name, in advertising, publicity, or other promotional activities any name, trade
      35             : //     name, trademark, logo, or other designation of "EnergyPlus", "E+", "e+" or confusingly
      36             : //     similar designation, without the U.S. Department of Energy's prior written consent.
      37             : //
      38             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
      39             : // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
      40             : // AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
      41             : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      42             : // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
      43             : // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      44             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
      45             : // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
      46             : // POSSIBILITY OF SUCH DAMAGE.
      47             : 
      48             : #ifndef EnergyPlus_PierceSurface_hh_INCLUDED
      49             : #define EnergyPlus_PierceSurface_hh_INCLUDED
      50             : 
      51             : // Purpose: Functions for checking if a ray hits a surface
      52             : //
      53             : // Author: Stuart Mentzer (Stuart_Mentzer@objexx.com)
      54             : //
      55             : // History:
      56             : //  Jun 2015: Last update of legacy version based on DOE-2 DPIERC
      57             : //  Jan 2016: Initial release
      58             : //
      59             : // Notes:
      60             : //  This is filling the role of the former PierceSurface function authored by Fred Winkelmann and based on
      61             : //   DOE-2.1E subroutine DPIERC and some aspects of this version are analogous
      62             : //  To match the former behavior rays with origin exactly on the surface are treated as not hitting
      63             : //  These functions are VERY performance critical for daylighting and solar reflection
      64             : //   This high-performance implementation was built to complement the octree system for scalability of those systems
      65             : //  This has been carefully designed for speed but is probably not be optimal yet
      66             : //   For EnergyPlus most surfaces are rectangular so that is the most important for performance
      67             : //   Inlining, storing preprocessed values in Surface, 2D projection, & short circuiting are used here for speed
      68             : //   Agressive inlining options may be needed to get peak performance
      69             : //   Don't make changes here without validating the performance impact
      70             : 
      71             : // EnergyPlus Headers
      72             : #include <EnergyPlus/DataSurfaces.hh>
      73             : #include <EnergyPlus/EnergyPlus.hh>
      74             : #include <EnergyPlus/Platform.hh>
      75             : 
      76             : // ObjexxFCL Headers
      77             : #include <ObjexxFCL/Vector2.hh>
      78             : #include <ObjexxFCL/Vector3.hh>
      79             : #include <ObjexxFCL/Vector4.hh>
      80             : 
      81             : // C++ Headers
      82             : #include <algorithm>
      83             : #include <cassert>
      84             : #include <limits>
      85             : 
      86             : namespace EnergyPlus {
      87             : 
      88           0 : inline bool PierceSurface_Triangular(DataSurfaces::Surface2D const &s2d, // 2D surface
      89             :                                      Vector2<Real64> const &h2d          // 2D hit point
      90             : )
      91             : {
      92             :     // Purpose: Check if a 2D hit point is in a triangular 2D surface
      93             :     //
      94             :     // Author: Stuart Mentzer (Stuart_Mentzer@objexx.com)
      95             :     //
      96             :     // History:
      97             :     //  Jan 2016: Initial release
      98             :     //
      99             :     // Notes:
     100             :     //  Pulled this case out into separate function to facilitate inlining
     101             : 
     102             :     using DataSurfaces::Surface2D;
     103           0 :     Surface2D::Vertices const &vs(s2d.vertices); // 2D surface vertices
     104           0 :     Surface2D::Vectors const &es(s2d.edges);     // 2D surface edge vectors
     105           0 :     if (es[0].cross(h2d - vs[0]) < 0.0) return false;
     106           0 :     if (es[1].cross(h2d - vs[1]) < 0.0) return false;
     107           0 :     if (es[2].cross(h2d - vs[2]) < 0.0) return false;
     108           0 :     return true;
     109             : } // PierceSurface_Triangular()
     110             : 
     111       23940 : inline bool PierceSurface_Convex(DataSurfaces::Surface2D const &s2d, // 2D surface
     112             :                                  Vector2<Real64> const &h2d          // 2D hit point
     113             : )
     114             : {
     115             :     // Purpose: Check if a 2D hit point is in a convex 2D surface
     116             :     //
     117             :     // Author: Stuart Mentzer (Stuart_Mentzer@objexx.com)
     118             :     //
     119             :     // History:
     120             :     //  Jan 2016: Initial release
     121             :     //
     122             :     // Notes:
     123             :     //  Pulled this rare case out into separate function to facilitate inlining
     124             :     //  This is O( n ) complexity so it is isn't used for many-vertex surfaces
     125             : 
     126             :     using DataSurfaces::Surface2D;
     127       23940 :     Surface2D::Vertices const &vs(s2d.vertices); // 2D surface vertices
     128       23940 :     Surface2D::Vectors const &es(s2d.edges);     // 2D surface edge vectors
     129       23940 :     Surface2D::Vertices::size_type const n(vs.size());
     130       23940 :     assert(n >= 3u);
     131       23940 :     switch (n) {
     132           0 :     case 8:
     133           0 :         if (es[7].cross(h2d - vs[7]) < 0.0) {
     134           0 :             return false;
     135             :         }
     136             :         // fallthrough
     137             :     case 7:
     138           0 :         if (es[6].cross(h2d - vs[6]) < 0.0) {
     139           0 :             return false;
     140             :         }
     141             :         // fallthrough
     142             :     case 6:
     143           0 :         if (es[5].cross(h2d - vs[5]) < 0.0) {
     144           0 :             return false;
     145             :         }
     146             :         // fallthrough
     147             :     case 5:
     148           0 :         if (es[4].cross(h2d - vs[4]) < 0.0) {
     149           0 :             return false;
     150             :         }
     151             :         // fallthrough
     152             :     case 4:
     153       23940 :         if (es[3].cross(h2d - vs[3]) < 0.0) {
     154        5978 :             return false;
     155             :         }
     156             :         // fallthrough
     157             :     case 3:
     158       17962 :         if (es[2].cross(h2d - vs[2]) < 0.0) {
     159          18 :             return false;
     160             :         }
     161       17944 :         if (es[1].cross(h2d - vs[1]) < 0.0) {
     162          18 :             return false;
     163             :         }
     164       17926 :         if (es[0].cross(h2d - vs[0]) < 0.0) {
     165        5902 :             return false;
     166             :         }
     167       12024 :         return true;
     168           0 :     default:
     169           0 :         for (Surface2D::Vertices::size_type i = 0; i < n; ++i) {
     170           0 :             if (es[i].cross(h2d - vs[i]) < 0.0) return false;
     171             :         }
     172           0 :         return true;
     173             :     }
     174             : } // PierceSurface_Convex()
     175             : 
     176           0 : inline bool PierceSurface_Nonconvex(DataSurfaces::Surface2D const &s2d, // 2D surface
     177             :                                     Vector2<Real64> const &h2d          // 2D hit point
     178             : )
     179             : {
     180             :     // Purpose: Check if a 2D hit point is in a 2D possibly nonconvex surface
     181             :     //
     182             :     // Author: Stuart Mentzer (Stuart_Mentzer@objexx.com)
     183             :     //
     184             :     // History:
     185             :     //  Jan 2016: Initial release
     186             :     //
     187             :     // Notes:
     188             :     //  Pulled this rare case out into separate function to facilitate inlining
     189             :     //  This works for nonconvex "simple" (no edge crossings) polygons
     190             :     //  This is also a fast O( log n ) algorithm for many-vertex convex surfaces
     191             : 
     192             :     using DataSurfaces::Surface2D;
     193             :     using size_type = Surface2D::Vertices::size_type;
     194             :     using Slab = DataSurfaces::Surface2DSlab;
     195             :     using Vertex2D = Vector2<Real64>;
     196           0 :     assert(s2d.vertices.size() >= 3u);
     197           0 :     Surface2D::Slabs const &slabs(s2d.slabs);    // 2D surface y slice slabs
     198           0 :     Surface2D::SlabYs const &slabYs(s2d.slabYs); // 2D surface slab y coordinates
     199           0 :     assert(slabYs.size() > 0u);
     200           0 :     Real64 const yHit(h2d.y); // Hit point y coordinate
     201             : 
     202             :     // Find slab with y range containing hit point
     203           0 :     auto const iHit(std::lower_bound(slabYs.begin(), slabYs.end(), yHit));
     204           0 :     assert((yHit >= slabYs.front()) && (yHit <= slabYs.back())); // Passed bounding box check so hit point in slabs y range
     205           0 :     assert(iHit != slabYs.end());                                // Hit point can't be above all slabs: passed bounding box check
     206           0 :     size_type const iSlab(std::min(static_cast<size_type>(iHit - 1 - slabYs.begin()), slabs.size())); // Hit slab index
     207           0 :     Slab const &slab(slabs[iSlab]);
     208             : 
     209             :     // Check hit point within slab bounding box x range
     210           0 :     Real64 const xHit(h2d.x);                               // Hit point x coordinate
     211           0 :     if ((xHit < slab.xl) || (xHit > slab.xu)) return false; // Hit point outside slab bounding box
     212             : 
     213             :     // Find edge pair surrounding hit point
     214           0 :     Slab::Edges const &slabEdges(slab.edges);
     215           0 :     Slab::EdgesXY const &slabEdgesXY(slab.edgesXY);
     216           0 :     size_type const nEdges(slabEdges.size());
     217           0 :     assert(nEdges >= 2u);
     218           0 :     if (nEdges == 2) { // 2 edges
     219           0 :         Slab::Edge const se0(slabEdges[0]);
     220           0 :         Slab::EdgeXY const eXY0(slabEdgesXY[0]);
     221           0 :         Vertex2D v0(s2d.vertices[se0]);
     222           0 :         Surface2D::Edge e0(s2d.edges[se0]);
     223           0 :         Real64 const x0(v0.x + (yHit - v0.y) * eXY0);
     224           0 :         if (xHit < x0) return false; // Hit point x is left of left edge
     225           0 :         Slab::Edge const se1(slabEdges[1]);
     226           0 :         Slab::EdgeXY const eXY1(slabEdgesXY[1]);
     227           0 :         Vertex2D v1(s2d.vertices[se1]);
     228           0 :         Surface2D::Edge e1(s2d.edges[se1]);
     229           0 :         Real64 const x1(v1.x + (yHit - v1.y) * eXY1);
     230           0 :         if (x1 < xHit) return false; // Hit point is right of right edge
     231           0 :     } else {                         // 4+ edges: Binary search for edges surrounding hit point
     232           0 :         assert(nEdges >= 4u);
     233           0 :         assert(nEdges % 2 == 0u);
     234           0 :         size_type l(0u), u(nEdges - 1);
     235           0 :         Slab::Edge const il(slabEdges[l]);
     236           0 :         Slab::EdgeXY const eXYl(slabEdgesXY[l]);
     237           0 :         Vertex2D const &vl(s2d.vertices[il]);
     238           0 :         Surface2D::Edge const el(s2d.edges[il]);
     239           0 :         Real64 const xl(vl.x + (yHit - vl.y) * eXYl);
     240           0 :         if (xHit < xl) return false; // Hit point x is left of leftmost edge
     241           0 :         Slab::Edge const iu(slabEdges[u]);
     242           0 :         Slab::EdgeXY const eXYu(slabEdgesXY[u]);
     243           0 :         Vertex2D const &vu(s2d.vertices[iu]);
     244           0 :         Surface2D::Edge const eu(s2d.edges[iu]);
     245           0 :         Real64 const xu(vu.x + (yHit - vu.y) * eXYu);
     246           0 :         if (xu < xHit) return false; // Hit point is right of rightmost edge
     247           0 :         while (u - l > 1u) {
     248           0 :             size_type const m((l + u) / 2);
     249           0 :             Slab::Edge const im(slabEdges[m]);
     250           0 :             Slab::EdgeXY const eXYm(slabEdgesXY[m]);
     251           0 :             Vertex2D const &vm(s2d.vertices[im]);
     252           0 :             Surface2D::Edge const em(s2d.edges[im]);
     253           0 :             Real64 xm(vm.x + (yHit - vm.y) * eXYm);
     254           0 :             if (xHit <= xm) {
     255           0 :                 u = m;
     256             :             } else {
     257           0 :                 l = m;
     258             :             }
     259           0 :         }
     260           0 :         assert(u - l == 1u);
     261           0 :         if (u % 2 == 0u) return false; // Outside of nonconvex surface polygon
     262           0 :     }
     263           0 :     return true;
     264           0 : } // PierceSurface_nonconvex()
     265             : 
     266             : ALWAYS_INLINE
     267             : bool PierceSurface_polygon(DataSurfaces::SurfaceData const &surface, // Surface
     268             :                            Vector3<Real64> const &hitPt              // Ray-plane intersection point
     269             : )
     270             : {
     271             :     // Purpose: Check if hit point on surface plane is in surface polygon
     272             :     //
     273             :     // Author: Stuart Mentzer (Stuart_Mentzer@objexx.com)
     274             :     //
     275             :     // History:
     276             :     //  Jan 2016: Initial release
     277             : 
     278             :     using DataSurfaces::nVerticesBig;
     279             :     using DataSurfaces::Surface2D;
     280             :     using Vertex2D = Vector2<Real64>;
     281    48937276 :     Surface2D const &s2d(surface.surface2d);
     282    48937276 :     int const axis(s2d.axis);
     283    48937276 :     Vertex2D const h2d(axis == 0 ? hitPt.y : hitPt.x, axis == 2 ? hitPt.y : hitPt.z);                       // Hit point in 2D surface's plane
     284    48937276 :     if ((h2d.x < s2d.vl.x) || (s2d.vu.x < h2d.x) || (h2d.y < s2d.vl.y) || (s2d.vu.y < h2d.y)) return false; // Misses 2D surface bounding box
     285     1042540 :     ShapeCat const shapeCat(surface.shapeCat);
     286     1042540 :     if (shapeCat == ShapeCat::Rectangular) { // Rectangular is most common: Special case algorithm is faster but assumes these are really rectangular
     287     1018600 :         Vertex2D const v0h(h2d - s2d.vertices[0]);
     288     1018600 :         Real64 const he1(v0h.dot(s2d.edges[0]));
     289     1018600 :         if ((he1 < 0.0) || (he1 > s2d.s1)) return false;
     290      983923 :         Real64 const he3(-v0h.dot(s2d.edges[3]));
     291      983923 :         if ((he3 < 0.0) || (he3 > s2d.s3)) return false;
     292      976411 :         return true;
     293     1042540 :     } else if (shapeCat == ShapeCat::Triangular) { // Cross products all nonnegative <=> Hit point in triangle
     294           0 :         return PierceSurface_Triangular(s2d, h2d);
     295       47880 :     } else if ((shapeCat == ShapeCat::Nonconvex) ||
     296       23940 :                (s2d.vertices.size() >= nVerticesBig)) { // O( log n ) algorithm for nonconvex and many-vertex convex surfaces
     297           0 :         return PierceSurface_Nonconvex(s2d, h2d);
     298       23940 :     } else if (shapeCat == ShapeCat::Convex) { // O( n ) algorithm for convex surface without too many vertices
     299       23940 :         return PierceSurface_Convex(s2d, h2d);
     300             :     } else {
     301           0 :         return false; // Should we assert here also?
     302             :     }
     303    48937276 : } // PierceSurface_Polygon()
     304             : 
     305             : ALWAYS_INLINE
     306             : bool PierceSurface(DataSurfaces::SurfaceData const &surface, // Surface
     307             :                    Vector3<Real64> const &rayOri,            // Ray origin point
     308             :                    Vector3<Real64> const &rayDir,            // Ray direction vector
     309             :                    Vector3<Real64> &hitPt                    // Ray-plane intersection point
     310             : )
     311             : {
     312             :     // Purpose: Check if a ray hits a surface and return the point of intersection
     313             :     //  with the surface's plane if they intersect.
     314             :     //  Convex and concave surfaces with 3 or more vertices are supported.
     315             :     //
     316             :     // Author: Stuart Mentzer (Stuart_Mentzer@objexx.com)
     317             :     //
     318             :     // History:
     319             :     //  Jan 2016: Initial release
     320             : 
     321             :     // Find ray intersection with surface plane
     322   120863126 :     DataSurfaces::SurfaceData::Plane const &plane(surface.plane);
     323   120863126 :     Real64 const den((plane.x * rayDir.x) + (plane.y * rayDir.y) + (plane.z * rayDir.z));
     324    68714700 :     if (den == 0.0) { // Ray is parallel to plane: This not treated as piercing even if ray lies in plane
     325        7330 :         return false;
     326             :     } else { // Ray's line intersects plane
     327   120855796 :         Real64 const num(-((plane.x * rayOri.x) + (plane.y * rayOri.y) + (plane.z * rayOri.z) + plane.w));
     328   120855796 :         if (num * den <=
     329             :             0.0) { // Ray points away from surface or ray origin is on surface: This looks odd but is fast way to check for different signs
     330    72085961 :             return false;
     331             :         } else {                                 // Ray points toward surface: Compute hit point
     332    48769835 :             Real64 const t(num / den);           // Ray parameter at plane intersection: hitPt = rayOri + t * rayDir
     333    48769835 :             hitPt.x = rayOri.x + (t * rayDir.x); // Compute by coordinate to avoid Vertex temporaries
     334    48769835 :             hitPt.y = rayOri.y + (t * rayDir.y);
     335    48769835 :             hitPt.z = rayOri.z + (t * rayDir.z);
     336             :         }
     337             :     }
     338             : 
     339             :     // Check if hit point is in surface polygon
     340    48769835 :     return PierceSurface_polygon(surface, hitPt);
     341             : } // PierceSurface()
     342             : 
     343             : ALWAYS_INLINE
     344             : bool PierceSurface(EnergyPlusData &state,
     345             :                    int const iSurf,               // Surface index
     346             :                    Vector3<Real64> const &rayOri, // Ray origin point
     347             :                    Vector3<Real64> const &rayDir, // Ray direction vector
     348             :                    Vector3<Real64> &hitPt         // Ray-plane intersection point
     349             : )
     350             : {
     351             :     // Purpose: Overload taking surface index instead of surface
     352             :     //
     353             :     // Author: Stuart Mentzer (Stuart_Mentzer@objexx.com)
     354             :     //
     355             :     // History:
     356             :     //  Jan 2016: Initial release
     357             : 
     358   112237498 :     return PierceSurface(state.dataSurface->Surface(iSurf), rayOri, rayDir, hitPt);
     359             : } // PierceSurface()
     360             : 
     361             : ALWAYS_INLINE
     362             : bool PierceSurface(DataSurfaces::SurfaceData const &surface, // Surface
     363             :                    Vector3<Real64> const &rayOri,            // Ray origin point
     364             :                    Vector3<Real64> const &rayDir,            // Ray direction unit vector
     365             :                    Real64 const dMax,                        // Max distance from rayOri to hit point
     366             :                    Vector3<Real64> &hitPt                    // Ray-plane intersection point
     367             : )
     368             : {
     369             :     // Purpose: Check if a ray hits a surface and return the point of intersection
     370             :     //  with the surface's plane if they intersect.
     371             :     //  Convex and concave surfaces with 3 or more vertices are supported.
     372             :     //  This overload limits the ray-surface distance for a hit.
     373             :     //
     374             :     // Author: Stuart Mentzer (Stuart_Mentzer@objexx.com)
     375             :     //
     376             :     // History:
     377             :     //  Jan 2016: Initial release
     378             : 
     379             :     // Input checks
     380    14850212 :     assert(std::abs(rayDir.mag_squared() - 1.0) <
     381             :            6 * std::numeric_limits<Real64>::epsilon()); // Check unit vector (6x is rough estimate. Increase slightly as needed.)
     382    14850212 :     assert(dMax >= 0.0);                                // Distance must be nonnegative
     383             : 
     384             :     // Find ray intersection with surface plane
     385    14850212 :     DataSurfaces::SurfaceData::Plane const &plane(surface.plane);
     386    14850212 :     Real64 const den((plane.x * rayDir.x) + (plane.y * rayDir.y) + (plane.z * rayDir.z));
     387    14850212 :     if (den == 0.0) { // Ray is parallel to plane: This not treated as piercing even if ray lies in plane
     388        1335 :         return false;
     389             :     } else { // Ray's line intersects plane
     390    14848877 :         Real64 const num(-((plane.x * rayOri.x) + (plane.y * rayOri.y) + (plane.z * rayOri.z) + plane.w));
     391    14848877 :         if (num * den <=
     392             :             0.0) { // Ray points away from surface or ray origin is on surface: This looks odd but is fast way to check for different signs
     393     8564668 :             return false;
     394             :         } else {                                 // Ray points toward surface: Compute hit point
     395     6284209 :             Real64 const t(num / den);           // Ray parameter at plane intersection: hitPt = rayOri + t * rayDir
     396     6284209 :             if (t > dMax) return false;          // Hit point exceeds distance from rayOri limit
     397      167441 :             hitPt.x = rayOri.x + (t * rayDir.x); // Compute by coordinate to avoid Vertex temporaries
     398      167441 :             hitPt.y = rayOri.y + (t * rayDir.y);
     399      167441 :             hitPt.z = rayOri.z + (t * rayDir.z);
     400             :         }
     401             :     }
     402             : 
     403             :     // Check if hit point is in surface polygon
     404      167441 :     return PierceSurface_polygon(surface, hitPt);
     405             : } // PierceSurface()
     406             : 
     407             : ALWAYS_INLINE
     408             : bool PierceSurface(EnergyPlusData &state,
     409             :                    int const iSurf,               // Surface index
     410             :                    Vector3<Real64> const &rayOri, // Ray origin point
     411             :                    Vector3<Real64> const &rayDir, // Ray direction unit vector
     412             :                    Real64 const dMax,             // Max distance from rayOri to hit point
     413             :                    Vector3<Real64> &hitPt         // Ray-plane intersection point
     414             : )
     415             : {
     416             :     // Purpose: Overload taking surface index instead of surface
     417             :     //
     418             :     // Author: Stuart Mentzer (Stuart_Mentzer@objexx.com)
     419             :     //
     420             :     // History:
     421             :     //  Jan 2016: Initial release
     422             : 
     423    24867122 :     return PierceSurface(state.dataSurface->Surface(iSurf), rayOri, rayDir, dMax, hitPt);
     424             : }
     425             : 
     426             : } // namespace EnergyPlus
     427             : 
     428             : #endif

Generated by: LCOV version 1.14