Line data Source code
1 : // EnergyPlus, Copyright (c) 1996-2025, The Board of Trustees of the University of Illinois,
2 : // The Regents of the University of California, through Lawrence Berkeley National Laboratory
3 : // (subject to receipt of any required approvals from the U.S. Dept. of Energy), Oak Ridge
4 : // National Laboratory, managed by UT-Battelle, Alliance for Sustainable Energy, LLC, and other
5 : // contributors. All rights reserved.
6 : //
7 : // NOTICE: This Software was developed under funding from the U.S. Department of Energy and the
8 : // U.S. Government consequently retains certain rights. As such, the U.S. Government has been
9 : // granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
10 : // worldwide license in the Software to reproduce, distribute copies to the public, prepare
11 : // derivative works, and perform publicly and display publicly, and to permit others to do so.
12 : //
13 : // Redistribution and use in source and binary forms, with or without modification, are permitted
14 : // provided that the following conditions are met:
15 : //
16 : // (1) Redistributions of source code must retain the above copyright notice, this list of
17 : // conditions and the following disclaimer.
18 : //
19 : // (2) Redistributions in binary form must reproduce the above copyright notice, this list of
20 : // conditions and the following disclaimer in the documentation and/or other materials
21 : // provided with the distribution.
22 : //
23 : // (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
24 : // the University of Illinois, U.S. Dept. of Energy nor the names of its contributors may be
25 : // used to endorse or promote products derived from this software without specific prior
26 : // written permission.
27 : //
28 : // (4) Use of EnergyPlus(TM) Name. If Licensee (i) distributes the software in stand-alone form
29 : // without changes from the version obtained under this License, or (ii) Licensee makes a
30 : // reference solely to the software portion of its product, Licensee must refer to the
31 : // software as "EnergyPlus version X" software, where "X" is the version number Licensee
32 : // obtained under this License and may not use a different name for the software. Except as
33 : // specifically required in this Section (4), Licensee shall not use in a company name, a
34 : // product name, in advertising, publicity, or other promotional activities any name, trade
35 : // name, trademark, logo, or other designation of "EnergyPlus", "E+", "e+" or confusingly
36 : // similar designation, without the U.S. Department of Energy's prior written consent.
37 : //
38 : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
39 : // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
40 : // AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
41 : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
42 : // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
43 : // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44 : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
45 : // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
46 : // POSSIBILITY OF SUCH DAMAGE.
47 :
48 : // C++ Headers
49 : #include <cassert>
50 : #include <cmath>
51 : #include <string>
52 :
53 : // ObjexxFCL Headers
54 : #include <ObjexxFCL/Fmath.hh>
55 :
56 : // EnergyPlus Headers
57 : #include "rs0001_factory.h"
58 : #include <EnergyPlus/Autosizing/All_Simple_Sizing.hh>
59 : #include <EnergyPlus/BranchNodeConnections.hh>
60 : #include <EnergyPlus/ChillerElectricASHRAE205.hh>
61 : #include <EnergyPlus/CurveManager.hh>
62 : #include <EnergyPlus/Data/EnergyPlusData.hh>
63 : #include <EnergyPlus/DataBranchAirLoopPlant.hh>
64 : #include <EnergyPlus/DataEnvironment.hh>
65 : #include <EnergyPlus/DataHVACGlobals.hh>
66 : #include <EnergyPlus/DataHeatBalance.hh>
67 : #include <EnergyPlus/DataIPShortCuts.hh>
68 : #include <EnergyPlus/DataLoopNode.hh>
69 : #include <EnergyPlus/DataSizing.hh>
70 : #include <EnergyPlus/DataSystemVariables.hh>
71 : #include <EnergyPlus/EMSManager.hh>
72 : #include <EnergyPlus/EnergyPlusLogger.hh>
73 : #include <EnergyPlus/FaultsManager.hh>
74 : #include <EnergyPlus/FileSystem.hh>
75 : #include <EnergyPlus/FluidProperties.hh>
76 : #include <EnergyPlus/General.hh>
77 : #include <EnergyPlus/GeneralRoutines.hh>
78 : #include <EnergyPlus/GlobalNames.hh>
79 : #include <EnergyPlus/HeatBalanceInternalHeatGains.hh>
80 : #include <EnergyPlus/InputProcessing/InputProcessor.hh>
81 : #include <EnergyPlus/NodeInputManager.hh>
82 : #include <EnergyPlus/OutAirNodeManager.hh>
83 : #include <EnergyPlus/OutputProcessor.hh>
84 : #include <EnergyPlus/OutputReportPredefined.hh>
85 : #include <EnergyPlus/Plant/DataPlant.hh>
86 : #include <EnergyPlus/Plant/PlantLocation.hh>
87 : #include <EnergyPlus/PlantUtilities.hh>
88 : #include <EnergyPlus/ScheduleManager.hh>
89 : #include <EnergyPlus/UtilityRoutines.hh>
90 : #include <EnergyPlus/ZoneTempPredictorCorrector.hh>
91 :
92 : namespace EnergyPlus::ChillerElectricASHRAE205 {
93 :
94 : constexpr std::array<std::string_view, static_cast<int>(AmbientTempIndicator::Num) - 1> AmbientTempNamesUC{
95 : "SCHEDULE",
96 : "ZONE",
97 : "OUTDOORS",
98 : };
99 :
100 : std::map<std::string, Btwxt::InterpolationMethod> InterpMethods = // NOLINT(cert-err58-cpp)
101 : {{"LINEAR", Btwxt::InterpolationMethod::linear}, {"CUBIC", Btwxt::InterpolationMethod::cubic}};
102 :
103 0 : void getChillerASHRAE205Input(EnergyPlusData &state)
104 : {
105 : static constexpr std::string_view RoutineName("getChillerASHRAE205Input: "); // include trailing blank space
106 : static constexpr std::string_view routineName = "getChillerASHRAE205Input";
107 :
108 : using namespace tk205;
109 0 : RSInstanceFactory::register_factory("RS0001", std::make_shared<RS0001Factory>());
110 :
111 0 : bool ErrorsFound{false};
112 :
113 0 : auto &s_ip = state.dataInputProcessing->inputProcessor;
114 0 : auto &s_ipsc = state.dataIPShortCut;
115 :
116 0 : state.dataIPShortCut->cCurrentModuleObject = ChillerElectricASHRAE205::ASHRAE205ChillerSpecs::ObjectType;
117 0 : int numElectric205Chillers = s_ip->getNumObjectsFound(state, state.dataIPShortCut->cCurrentModuleObject);
118 :
119 0 : if (numElectric205Chillers <= 0) {
120 0 : ShowSevereError(state, format("No {} equipment specified in input file", state.dataIPShortCut->cCurrentModuleObject));
121 0 : ErrorsFound = true;
122 : }
123 :
124 0 : state.dataChillerElectricASHRAE205->Electric205Chiller.allocate(numElectric205Chillers);
125 :
126 0 : auto const &ChillerInstances = s_ip->epJSON.find(state.dataIPShortCut->cCurrentModuleObject).value();
127 0 : int ChillerNum{0};
128 0 : auto const &objectSchemaProps = s_ip->getObjectSchemaProps(state, state.dataIPShortCut->cCurrentModuleObject);
129 :
130 0 : for (auto &instance : ChillerInstances.items()) {
131 0 : auto const &fields = instance.value();
132 0 : std::string const &thisObjectName = instance.key();
133 :
134 0 : ErrorObjectHeader eoh{routineName, s_ipsc->cCurrentModuleObject, thisObjectName};
135 :
136 0 : GlobalNames::VerifyUniqueChillerName(
137 0 : state, state.dataIPShortCut->cCurrentModuleObject, thisObjectName, ErrorsFound, state.dataIPShortCut->cCurrentModuleObject + " Name");
138 :
139 0 : ++ChillerNum;
140 0 : auto &thisChiller = state.dataChillerElectricASHRAE205->Electric205Chiller(ChillerNum);
141 0 : thisChiller.Name = Util::makeUPPER(thisObjectName);
142 :
143 0 : s_ip->markObjectAsUsed(state.dataIPShortCut->cCurrentModuleObject, thisObjectName);
144 :
145 0 : std::string const rep_file_name = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "representation_file_name");
146 0 : fs::path rep_file_path = DataSystemVariables::CheckForActualFilePath(state, fs::path(rep_file_name), std::string(RoutineName));
147 0 : if (rep_file_path.empty()) {
148 0 : ErrorsFound = true;
149 : // Given that several of the following expressions require the representation file to be present, we'll just throw a fatal here.
150 : // The ErrorsFound flag is still set to true here so that in the future, if we defer the fatal until later in this routine, it will still
151 : // be set The CheckForActualFilePath function emits some nice information to the ERR file, so we just need a simple fatal here
152 0 : ShowFatalError(state, "Program terminates due to the missing ASHRAE 205 RS0001 representation file.");
153 : }
154 : // Since logger context must persist across all calls to libtk205/btwxt, it must be a member
155 0 : thisChiller.LoggerContext = {&state, format("{} \"{}\"", state.dataIPShortCut->cCurrentModuleObject, thisObjectName)};
156 0 : thisChiller.Representation = std::dynamic_pointer_cast<tk205::rs0001_ns::RS0001>(
157 0 : RSInstanceFactory::create("RS0001", FileSystem::toString(rep_file_path).c_str(), std::make_shared<EnergyPlusLogger>()));
158 0 : if (nullptr == thisChiller.Representation) {
159 0 : ShowSevereError(state, format("{} is not an instance of an ASHRAE205 Chiller.", rep_file_path));
160 0 : ErrorsFound = true;
161 : }
162 0 : thisChiller.Representation->performance.performance_map_cooling.get_logger()->set_message_context(&thisChiller.LoggerContext);
163 0 : thisChiller.Representation->performance.performance_map_standby.get_logger()->set_message_context(&thisChiller.LoggerContext);
164 0 : thisChiller.InterpolationType =
165 0 : InterpMethods[Util::makeUPPER(s_ip->getAlphaFieldValue(fields, objectSchemaProps, "performance_interpolation_method"))];
166 :
167 0 : const auto &compressorSequence = thisChiller.Representation->performance.performance_map_cooling.grid_variables.compressor_sequence_number;
168 : // minmax_element is sound but perhaps overkill; as sequence numbers are required by A205 to be in ascending order
169 0 : const auto minmaxSequenceNum = std::minmax_element(compressorSequence.begin(), compressorSequence.end());
170 0 : thisChiller.MinSequenceNumber = *(minmaxSequenceNum.first);
171 0 : thisChiller.MaxSequenceNumber = *(minmaxSequenceNum.second);
172 :
173 0 : if (fields.count("rated_capacity")) {
174 0 : ShowWarningError(state, format("{}{}=\"{}\"", std::string{RoutineName}, state.dataIPShortCut->cCurrentModuleObject, thisChiller.Name));
175 0 : ShowContinueError(state, "Rated Capacity field is not yet supported for ASHRAE 205 representations.");
176 : }
177 :
178 0 : thisChiller.RefCap = 0.0; // ip->getRealFieldValue(fields, objectSchemaProps, "rated_capacity");
179 0 : thisChiller.RefCapWasAutoSized = false; // for now
180 :
181 : // if (thisChiller.RefCap == DataSizing::AutoSize) {
182 : // thisChiller.RefCapWasAutoSized = true;
183 : // }
184 : // if (thisChiller.RefCap == 0.0) {
185 : // ShowSevereError(
186 : // state, format("{}{}=\"{}\"",std::string{RoutineName},state.dataIPShortCut->cCurrentModuleObject,thisChiller.Name);
187 : // ShowContinueError(state, format("Invalid {}={:.2R}", "Rated Capacity", thisChiller.RefCap));
188 : // ErrorsFound = true;
189 : // }
190 :
191 0 : std::string const evap_inlet_node_name = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "chilled_water_inlet_node_name");
192 0 : std::string const evap_outlet_node_name = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "chilled_water_outlet_node_name");
193 0 : if (evap_inlet_node_name.empty() || evap_outlet_node_name.empty()) {
194 0 : ShowSevereError(state, format("{}{}=\"{}\"", std::string{RoutineName}, state.dataIPShortCut->cCurrentModuleObject, thisChiller.Name));
195 0 : ShowContinueError(state, "Evaporator Inlet or Outlet Node Name is blank.");
196 0 : ErrorsFound = true;
197 : }
198 0 : thisChiller.EvapInletNodeNum = NodeInputManager::GetOnlySingleNode(state,
199 : evap_inlet_node_name,
200 : ErrorsFound,
201 : DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
202 0 : thisChiller.Name,
203 : DataLoopNode::NodeFluidType::Water,
204 : DataLoopNode::ConnectionType::Inlet,
205 : NodeInputManager::CompFluidStream::Primary,
206 : DataLoopNode::ObjectIsNotParent);
207 0 : thisChiller.EvapOutletNodeNum = NodeInputManager::GetOnlySingleNode(state,
208 : evap_outlet_node_name,
209 : ErrorsFound,
210 : DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
211 0 : thisChiller.Name,
212 : DataLoopNode::NodeFluidType::Water,
213 : DataLoopNode::ConnectionType::Outlet,
214 : NodeInputManager::CompFluidStream::Primary,
215 : DataLoopNode::ObjectIsNotParent);
216 0 : BranchNodeConnections::TestCompSet(
217 0 : state, state.dataIPShortCut->cCurrentModuleObject, thisChiller.Name, evap_inlet_node_name, evap_outlet_node_name, "Chilled Water Nodes");
218 :
219 0 : thisChiller.CondenserType = DataPlant::CondenserType::WaterCooled;
220 :
221 0 : std::string const cond_inlet_node_name = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "condenser_inlet_node_name");
222 0 : std::string const cond_outlet_node_name = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "condenser_outlet_node_name");
223 0 : if (cond_inlet_node_name.empty() || cond_outlet_node_name.empty()) {
224 0 : ShowSevereError(state, format("{}{}=\"{}\"", std::string{RoutineName}, state.dataIPShortCut->cCurrentModuleObject, thisChiller.Name));
225 0 : ShowContinueError(state, "Condenser Inlet or Outlet Node Name is blank.");
226 0 : ErrorsFound = true;
227 : }
228 0 : thisChiller.CondInletNodeNum = NodeInputManager::GetOnlySingleNode(state,
229 : cond_inlet_node_name,
230 : ErrorsFound,
231 : DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
232 0 : thisChiller.Name,
233 : DataLoopNode::NodeFluidType::Water,
234 : DataLoopNode::ConnectionType::Inlet,
235 : NodeInputManager::CompFluidStream::Secondary,
236 : DataLoopNode::ObjectIsNotParent);
237 :
238 0 : thisChiller.CondOutletNodeNum = NodeInputManager::GetOnlySingleNode(state,
239 : cond_outlet_node_name,
240 : ErrorsFound,
241 : DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
242 0 : thisChiller.Name,
243 : DataLoopNode::NodeFluidType::Water,
244 : DataLoopNode::ConnectionType::Outlet,
245 : NodeInputManager::CompFluidStream::Secondary,
246 : DataLoopNode::ObjectIsNotParent);
247 :
248 0 : BranchNodeConnections::TestCompSet(state,
249 0 : state.dataIPShortCut->cCurrentModuleObject,
250 : thisChiller.Name,
251 : cond_inlet_node_name,
252 : cond_outlet_node_name,
253 : "Condenser Water Nodes");
254 :
255 0 : thisChiller.FlowMode = static_cast<DataPlant::FlowMode>(
256 0 : getEnumValue(DataPlant::FlowModeNamesUC, s_ip->getAlphaFieldValue(fields, objectSchemaProps, "chiller_flow_mode")));
257 :
258 0 : if (thisChiller.FlowMode == DataPlant::FlowMode::Invalid) {
259 0 : ShowSevereError(state, format("{}{}=\"{}\"", std::string{RoutineName}, state.dataIPShortCut->cCurrentModuleObject, thisObjectName));
260 0 : ShowContinueError(state, format("Invalid Chiller Flow Mode = {}", fields.at("chiller_flow_mode").get<std::string>()));
261 0 : ShowContinueError(state, "Available choices are ConstantFlow, NotModulated, or LeavingSetpointModulated");
262 0 : ShowContinueError(state, "Flow mode NotModulated is assumed and the simulation continues.");
263 0 : thisChiller.FlowMode = DataPlant::FlowMode::NotModulated;
264 : };
265 :
266 0 : thisChiller.SizFac = fields.at("sizing_factor").get<Real64>();
267 0 : if (thisChiller.SizFac <= 0.0) {
268 0 : thisChiller.SizFac = 1.0;
269 : }
270 :
271 : {
272 0 : auto &tmpFlowRate = fields.at("chilled_water_maximum_requested_flow_rate");
273 0 : if (tmpFlowRate == "Autosize") {
274 0 : thisChiller.EvapVolFlowRate = DataSizing::AutoSize;
275 0 : thisChiller.EvapVolFlowRateWasAutoSized = true;
276 : } else {
277 0 : thisChiller.EvapVolFlowRate = tmpFlowRate.get<Real64>();
278 : }
279 : }
280 : {
281 0 : auto &tmpFlowRate = fields.at("condenser_maximum_requested_flow_rate");
282 0 : if (tmpFlowRate == "Autosize") {
283 0 : thisChiller.CondVolFlowRate = DataSizing::AutoSize;
284 0 : thisChiller.CondVolFlowRateWasAutoSized = true;
285 : } else {
286 0 : thisChiller.CondVolFlowRate = tmpFlowRate.get<Real64>();
287 : }
288 : }
289 :
290 0 : thisChiller.AmbientTempType = static_cast<AmbientTempIndicator>(
291 0 : getEnumValue(AmbientTempNamesUC, Util::makeUPPER(s_ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_indicator"))));
292 0 : switch (thisChiller.AmbientTempType) {
293 0 : case AmbientTempIndicator::Schedule: {
294 0 : std::string const ambient_temp_schedule = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_schedule");
295 0 : if ((thisChiller.ambientTempSched = Sched::GetSchedule(state, ambient_temp_schedule)) == nullptr) {
296 0 : ShowSevereItemNotFound(state, eoh, "Ambient Temperature Schedule", ambient_temp_schedule);
297 0 : ErrorsFound = true;
298 : }
299 :
300 0 : break;
301 0 : }
302 0 : case AmbientTempIndicator::TempZone: {
303 0 : std::string const ambient_temp_zone_name = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_zone_name");
304 0 : thisChiller.AmbientTempZone = Util::FindItemInList(ambient_temp_zone_name, state.dataHeatBal->Zone);
305 0 : if (thisChiller.AmbientTempZone == 0) {
306 0 : ShowSevereError(state,
307 0 : format("{} = {}: Ambient Temperature Zone not found = {}",
308 0 : state.dataIPShortCut->cCurrentModuleObject,
309 : thisObjectName,
310 : ambient_temp_zone_name));
311 0 : ErrorsFound = true;
312 : } else {
313 0 : SetupZoneInternalGain(state,
314 : thisChiller.AmbientTempZone,
315 : thisChiller.Name,
316 : DataHeatBalance::IntGainType::ElectricEquipment,
317 : &thisChiller.AmbientZoneGain);
318 : }
319 0 : break;
320 0 : }
321 0 : case AmbientTempIndicator::OutsideAir: {
322 : std::string const ambient_temp_outdoor_node =
323 0 : s_ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_outdoor_air_node_name");
324 0 : thisChiller.AmbientTempOutsideAirNode = NodeInputManager::GetOnlySingleNode(state,
325 : ambient_temp_outdoor_node,
326 : ErrorsFound,
327 : DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
328 0 : thisChiller.Name,
329 : DataLoopNode::NodeFluidType::Air,
330 : DataLoopNode::ConnectionType::OutsideAirReference,
331 : NodeInputManager::CompFluidStream::Primary,
332 : DataLoopNode::ObjectIsNotParent);
333 0 : if (fields.count("ambient_temperature_outdoor_air_node_name")) {
334 0 : if (!OutAirNodeManager::CheckOutAirNodeNumber(state, thisChiller.AmbientTempOutsideAirNode)) {
335 0 : ShowSevereError(state,
336 0 : format("{} = {}: Outdoor Air Node not on OutdoorAir:NodeList or OutdoorAir:Node",
337 0 : state.dataIPShortCut->cCurrentModuleObject,
338 : thisObjectName));
339 0 : ShowContinueError(state, format("...Referenced Node Name={}", ambient_temp_outdoor_node));
340 0 : ErrorsFound = true;
341 : }
342 : } else {
343 0 : ShowSevereError(state, format("{} = {}", state.dataIPShortCut->cCurrentModuleObject, ambient_temp_outdoor_node));
344 0 : ShowContinueError(state, "An Ambient Outdoor Air Node name must be used when the Ambient Temperature Indicator is Outdoors.");
345 0 : ErrorsFound = true;
346 : }
347 :
348 0 : break;
349 0 : }
350 0 : default: {
351 0 : ShowSevereError(state,
352 0 : format("{} = {}: Invalid Ambient Temperature Indicator entered={}",
353 0 : state.dataIPShortCut->cCurrentModuleObject,
354 : thisObjectName,
355 0 : s_ip->getAlphaFieldValue(fields, objectSchemaProps, "ambient_temperature_indicator")));
356 0 : ShowContinueError(state, " Valid entries are SCHEDULE, ZONE, and OUTDOORS.");
357 0 : ErrorsFound = true;
358 0 : break;
359 : }
360 : }
361 : // end Ambient temperature
362 0 : std::string const oil_cooler_inlet_node = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "oil_cooler_inlet_node_name");
363 0 : std::string const oil_cooler_outlet_node = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "oil_cooler_outlet_node_name");
364 0 : if (!oil_cooler_inlet_node.empty() && !oil_cooler_outlet_node.empty()) {
365 0 : thisChiller.OilCoolerInletNode = NodeInputManager::GetOnlySingleNode(state,
366 : oil_cooler_inlet_node,
367 : ErrorsFound,
368 : DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
369 0 : thisChiller.Name,
370 : DataLoopNode::NodeFluidType::Water,
371 : DataLoopNode::ConnectionType::Inlet,
372 : NodeInputManager::CompFluidStream::Tertiary,
373 : DataLoopNode::ObjectIsNotParent);
374 0 : thisChiller.OilCoolerOutletNode = NodeInputManager::GetOnlySingleNode(state,
375 : oil_cooler_outlet_node,
376 : ErrorsFound,
377 : DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
378 0 : thisChiller.Name,
379 : DataLoopNode::NodeFluidType::Water,
380 : DataLoopNode::ConnectionType::Outlet,
381 : NodeInputManager::CompFluidStream::Tertiary,
382 : DataLoopNode::ObjectIsNotParent);
383 0 : BranchNodeConnections::TestCompSet(state,
384 0 : state.dataIPShortCut->cCurrentModuleObject,
385 : thisChiller.Name,
386 : oil_cooler_inlet_node,
387 : oil_cooler_outlet_node,
388 : "Oil Cooler Water Nodes");
389 : }
390 0 : std::string const aux_heat_inlet_node = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "auxiliary_inlet_node_name");
391 0 : std::string const aux_heat_outlet_node = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "auxiliary_outlet_node_name");
392 0 : if (!aux_heat_inlet_node.empty() && !aux_heat_outlet_node.empty()) {
393 :
394 0 : thisChiller.AuxiliaryHeatInletNode = NodeInputManager::GetOnlySingleNode(state,
395 : aux_heat_inlet_node,
396 : ErrorsFound,
397 : DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
398 0 : thisChiller.Name,
399 : DataLoopNode::NodeFluidType::Water,
400 : DataLoopNode::ConnectionType::Inlet,
401 : NodeInputManager::CompFluidStream::Quaternary,
402 : DataLoopNode::ObjectIsNotParent);
403 0 : thisChiller.AuxiliaryHeatOutletNode = NodeInputManager::GetOnlySingleNode(state,
404 : aux_heat_outlet_node,
405 : ErrorsFound,
406 : DataLoopNode::ConnectionObjectType::ChillerElectricASHRAE205,
407 0 : thisChiller.Name,
408 : DataLoopNode::NodeFluidType::Water,
409 : DataLoopNode::ConnectionType::Outlet,
410 : NodeInputManager::CompFluidStream::Quaternary,
411 : DataLoopNode::ObjectIsNotParent);
412 0 : BranchNodeConnections::TestCompSet(state,
413 0 : state.dataIPShortCut->cCurrentModuleObject,
414 : thisChiller.Name,
415 : aux_heat_inlet_node,
416 : aux_heat_outlet_node,
417 : "Auxiliary Water Nodes");
418 : }
419 :
420 : // TODO: When implemented, add ...WasAutoSized variables
421 0 : if (fields.count("oil_cooler_design_flow_rate")) {
422 0 : thisChiller.OilCoolerVolFlowRate = fields.at("oil_cooler_design_flow_rate").get<Real64>();
423 : }
424 0 : if (fields.count("auxiliary_equipment_design_flow_rate")) {
425 0 : thisChiller.AuxiliaryVolFlowRate = fields.at("auxiliary_equipment_design_flow_rate").get<Real64>();
426 : }
427 :
428 0 : if (fields.count("end_use_subcategory")) {
429 0 : thisChiller.EndUseSubcategory = s_ip->getAlphaFieldValue(fields, objectSchemaProps, "end_use_subcategory");
430 : } else {
431 0 : thisChiller.EndUseSubcategory = "General";
432 : }
433 : // Set reference conditions
434 0 : thisChiller.TempRefCondIn = 29.44;
435 0 : thisChiller.TempRefEvapOut = 6.67;
436 0 : }
437 :
438 0 : if (ErrorsFound) {
439 0 : ShowFatalError(state, format("Errors found in processing input for {}", state.dataIPShortCut->cCurrentModuleObject));
440 : }
441 0 : }
442 :
443 0 : ASHRAE205ChillerSpecs *ASHRAE205ChillerSpecs::factory(EnergyPlusData &state, std::string const &objectName)
444 : {
445 0 : if (state.dataChillerElectricASHRAE205->getInputFlag) {
446 0 : getChillerASHRAE205Input(state);
447 0 : state.dataChillerElectricASHRAE205->getInputFlag = false;
448 : }
449 0 : auto thisObj = std::find_if(state.dataChillerElectricASHRAE205->Electric205Chiller.begin(),
450 0 : state.dataChillerElectricASHRAE205->Electric205Chiller.end(),
451 0 : [&objectName](const ASHRAE205ChillerSpecs &myObj) { return myObj.Name == objectName; });
452 0 : if (thisObj != state.dataChillerElectricASHRAE205->Electric205Chiller.end()) return thisObj;
453 : // If we didn't find it, fatal
454 : ShowFatalError(state, format("ASHRAE205ChillerSpecs::factory: Error getting inputs for object named: {}", objectName)); // LCOV_EXCL_LINE
455 : return nullptr; // LCOV_EXCL_LINE
456 : }
457 :
458 0 : void ASHRAE205ChillerSpecs::oneTimeInit_new(EnergyPlusData &state)
459 : {
460 : // This function is called from GetPlantInput
461 : // Locate the chillers on the plant loops for later usage
462 0 : bool errFlag{false};
463 0 : PlantUtilities::ScanPlantLoopsForObject(
464 0 : state, this->Name, DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205, this->CWPlantLoc, errFlag, _, _, _, this->EvapInletNodeNum, _);
465 0 : if (this->CondenserType != DataPlant::CondenserType::AirCooled) {
466 0 : PlantUtilities::ScanPlantLoopsForObject(state,
467 : this->Name,
468 : DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
469 0 : this->CDPlantLoc,
470 : errFlag,
471 : _,
472 : _,
473 : _,
474 0 : this->CondInletNodeNum,
475 : _);
476 0 : PlantUtilities::InterConnectTwoPlantLoopSides(
477 0 : state, this->CWPlantLoc, this->CDPlantLoc, DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205, true);
478 : }
479 0 : if (this->OilCoolerInletNode) {
480 0 : PlantUtilities::ScanPlantLoopsForObject(state,
481 : this->Name,
482 : DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
483 0 : this->OCPlantLoc,
484 : errFlag,
485 : _,
486 : _,
487 : _,
488 0 : this->OilCoolerInletNode,
489 : _);
490 : }
491 0 : if (this->AuxiliaryHeatInletNode) {
492 0 : PlantUtilities::ScanPlantLoopsForObject(state,
493 : this->Name,
494 : DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
495 0 : this->AHPlantLoc,
496 : errFlag,
497 : _,
498 : _,
499 : _,
500 0 : this->AuxiliaryHeatInletNode,
501 : _);
502 : }
503 : // If and when heat recovery is implemented, uncomment
504 : #if 0
505 : if (this->HeatRecActive) {
506 : PlantUtilities::ScanPlantLoopsForObject(state,
507 : this->Name,
508 : DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
509 : this->HRPlantLoc,
510 : errFlag,
511 : _,
512 : _,
513 : _,
514 : this->HeatRecInletNodeNum,
515 : _);
516 : PlantUtilities::InterConnectTwoPlantLoopSides(
517 : state, this->CWPlantLoc, this->HRPlantLoc, DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205, true);
518 : }
519 :
520 : if ((this->CondenserType != DataPlant::CondenserType::AirCooled) && (this->HeatRecActive)) {
521 : PlantUtilities::InterConnectTwoPlantLoopSides(
522 : state, this->CDPlantLoc, this->HRPlantLoc, DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205, false);
523 : }
524 : #endif // #if 0
525 :
526 0 : if (errFlag) {
527 0 : ShowFatalError(state, "InitElecASHRAE205Chiller: Program terminated due to previous condition(s).");
528 : }
529 :
530 0 : if (this->FlowMode == DataPlant::FlowMode::Constant) {
531 : // reset flow priority
532 0 : this->CWPlantLoc.comp->FlowPriority = DataPlant::LoopFlowStatus::NeedyIfLoopOn;
533 : }
534 :
535 0 : else if (this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) {
536 : // reset flow priority
537 0 : this->CWPlantLoc.comp->FlowPriority = DataPlant::LoopFlowStatus::NeedyIfLoopOn;
538 : // check if setpoint on outlet node
539 0 : if ((state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint == DataLoopNode::SensedNodeFlagValue) &&
540 0 : (state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi == DataLoopNode::SensedNodeFlagValue)) {
541 0 : if (!state.dataGlobal->AnyEnergyManagementSystemInModel) {
542 0 : if (!this->ModulatedFlowErrDone) {
543 0 : ShowWarningError(state, format("Missing temperature setpoint for LeavingSetpointModulated mode chiller named {}", this->Name));
544 0 : ShowContinueError(
545 : state, " A temperature setpoint is needed at the outlet node of a chiller in variable flow mode, use a SetpointManager");
546 0 : ShowContinueError(state, " The overall loop setpoint will be assumed for chiller. The simulation continues ... ");
547 0 : this->ModulatedFlowErrDone = true;
548 : }
549 : } else {
550 : // need call to EMS to check node
551 0 : bool fatalError = false; // but not really fatal yet, but should be.
552 0 : EMSManager::CheckIfNodeSetPointManagedByEMS(state, this->EvapOutletNodeNum, HVAC::CtrlVarType::Temp, fatalError);
553 0 : state.dataLoopNodes->NodeSetpointCheck(this->EvapOutletNodeNum).needsSetpointChecking = false;
554 0 : if (fatalError) {
555 0 : if (!this->ModulatedFlowErrDone) {
556 0 : ShowWarningError(state,
557 0 : format("Missing temperature setpoint for LeavingSetpointModulated mode chiller named {}", this->Name));
558 0 : ShowContinueError(state,
559 : " A temperature setpoint is needed at the outlet node of a chiller evaporator in variable flow mode");
560 0 : ShowContinueError(state, " use a Setpoint Manager to establish a setpoint at the chiller evaporator outlet node ");
561 0 : ShowContinueError(state, " or use an EMS actuator to establish a setpoint at the outlet node ");
562 0 : ShowContinueError(state, " The overall loop setpoint will be assumed for chiller. The simulation continues ... ");
563 0 : this->ModulatedFlowErrDone = true;
564 : }
565 : }
566 : }
567 0 : this->ModulatedFlowSetToLoop = true;
568 0 : state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint =
569 0 : state.dataLoopNodes->Node(this->CWPlantLoc.loop->TempSetPointNodeNum).TempSetPoint;
570 0 : state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi =
571 0 : state.dataLoopNodes->Node(this->CWPlantLoc.loop->TempSetPointNodeNum).TempSetPointHi;
572 : }
573 : }
574 :
575 0 : this->setOutputVariables(state);
576 0 : }
577 :
578 0 : void ASHRAE205ChillerSpecs::initialize(EnergyPlusData &state, bool const RunFlag, Real64 const MyLoad)
579 : {
580 : static constexpr std::string_view RoutineName("ASHRAE205ChillerSpecs::initialize");
581 :
582 0 : switch (this->AmbientTempType) {
583 0 : case AmbientTempIndicator::Schedule: {
584 0 : this->AmbientTemp = this->ambientTempSched->getCurrentVal();
585 0 : break;
586 : }
587 0 : case AmbientTempIndicator::TempZone: {
588 0 : this->AmbientTemp = state.dataZoneTempPredictorCorrector->zoneHeatBalance(this->AmbientTempZone).MAT;
589 0 : break;
590 : }
591 0 : case AmbientTempIndicator::OutsideAir: {
592 0 : this->AmbientTemp = state.dataLoopNodes->Node(this->AmbientTempOutsideAirNode).Temp;
593 0 : break;
594 : }
595 0 : default:
596 0 : break;
597 : }
598 :
599 0 : this->EquipFlowCtrl = this->CWPlantLoc.comp->FlowCtrl;
600 :
601 0 : if (this->MyEnvrnFlag && state.dataGlobal->BeginEnvrnFlag && (state.dataPlnt->PlantFirstSizesOkayToFinalize)) {
602 0 : Real64 rho = this->CWPlantLoc.loop->glycol->getDensity(state, Constant::CWInitConvTemp, RoutineName);
603 :
604 0 : this->EvapMassFlowRateMax = rho * this->EvapVolFlowRate;
605 0 : PlantUtilities::InitComponentNodes(state, 0.0, this->EvapMassFlowRateMax, this->EvapInletNodeNum, this->EvapOutletNodeNum);
606 :
607 0 : if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
608 0 : rho = this->CDPlantLoc.loop->glycol->getDensity(state, this->TempRefCondIn, RoutineName);
609 0 : this->CondMassFlowRateMax = rho * this->CondVolFlowRate;
610 0 : PlantUtilities::InitComponentNodes(state, 0.0, this->CondMassFlowRateMax, this->CondInletNodeNum, this->CondOutletNodeNum);
611 0 : state.dataLoopNodes->Node(this->CondInletNodeNum).Temp = this->TempRefCondIn;
612 : }
613 : // Set mass flow rates at Oil Cooler and Aux Equipment nodes
614 0 : if (this->OilCoolerInletNode) {
615 0 : Real64 rho_oil_cooler = this->OCPlantLoc.loop->glycol->getDensity(state, Constant::InitConvTemp, RoutineName);
616 0 : this->OilCoolerMassFlowRate = rho_oil_cooler * this->OilCoolerVolFlowRate;
617 0 : PlantUtilities::InitComponentNodes(state, 0.0, this->OilCoolerMassFlowRate, this->OilCoolerInletNode, this->OilCoolerOutletNode);
618 : }
619 0 : if (this->AuxiliaryHeatInletNode) {
620 0 : Real64 rho_aux = this->AHPlantLoc.loop->glycol->getDensity(state, Constant::InitConvTemp, RoutineName);
621 0 : this->AuxiliaryMassFlowRate = rho_aux * this->AuxiliaryVolFlowRate;
622 0 : PlantUtilities::InitComponentNodes(state, 0.0, this->AuxiliaryMassFlowRate, this->AuxiliaryHeatInletNode, this->AuxiliaryHeatOutletNode);
623 : }
624 : }
625 0 : if (!state.dataGlobal->BeginEnvrnFlag) {
626 0 : this->MyEnvrnFlag = true;
627 : }
628 :
629 0 : if ((this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) && this->ModulatedFlowSetToLoop) {
630 : // see ReformulatedEIR or EIR Chiller for origin of the following
631 0 : state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint =
632 0 : state.dataLoopNodes->Node(this->CWPlantLoc.loop->TempSetPointNodeNum).TempSetPoint;
633 0 : state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi =
634 0 : state.dataLoopNodes->Node(this->CWPlantLoc.loop->TempSetPointNodeNum).TempSetPointHi;
635 : }
636 :
637 0 : Real64 mdot = ((std::abs(MyLoad) > 0.0) && RunFlag) ? this->EvapMassFlowRateMax : 0.0;
638 0 : Real64 mdotCond = ((std::abs(MyLoad) > 0.0) && RunFlag) ? this->CondMassFlowRateMax : 0.0;
639 :
640 0 : PlantUtilities::SetComponentFlowRate(state, mdot, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
641 :
642 0 : if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
643 0 : PlantUtilities::SetComponentFlowRate(state, mdotCond, this->CondInletNodeNum, this->CondOutletNodeNum, this->CDPlantLoc);
644 : }
645 :
646 : // Set component flow rates for Oil Cooler and Aux equipment
647 0 : if (this->OilCoolerInletNode) {
648 0 : PlantUtilities::SetComponentFlowRate(
649 0 : state, this->OilCoolerMassFlowRate, this->OilCoolerInletNode, this->OilCoolerOutletNode, this->OCPlantLoc);
650 : }
651 0 : if (this->AuxiliaryHeatInletNode) {
652 0 : PlantUtilities::SetComponentFlowRate(
653 0 : state, this->AuxiliaryMassFlowRate, this->AuxiliaryHeatInletNode, this->AuxiliaryHeatOutletNode, this->AHPlantLoc);
654 : }
655 : // Recalculate volumetric flow rates from component mass flow rates if necessary
656 :
657 : // Revisit when heat recovery implemented
658 : #if 0
659 : // Initialize heat recovery flow rates at node
660 : if (this->HeatRecActive) {
661 :
662 : // check if inlet limit active and if exceeded.
663 : bool HeatRecRunFlag = RunFlag;
664 : if (this->heatRecInletLimitSched != nullptr) {
665 : Real64 HeatRecHighInletLimit = this->heatRecInletLimitSched->getCurrentVal();
666 : if (state.dataLoopNodes->Node(this->HeatRecInletNodeNum).Temp > HeatRecHighInletLimit) { // shut down heat recovery
667 : HeatRecRunFlag = false;
668 : } else {
669 : HeatRecRunFlag = RunFlag;
670 : }
671 : }
672 :
673 : mdot = HeatRecRunFlag ? this->DesignHeatRecMassFlowRate : 0.0;
674 :
675 : PlantUtilities::SetComponentFlowRate(state, mdot, this->HeatRecInletNodeNum, this->HeatRecOutletNodeNum, this->HRPlantLoc);
676 : }
677 : #endif // if 0
678 0 : }
679 :
680 0 : void ASHRAE205ChillerSpecs::size([[maybe_unused]] EnergyPlusData &state)
681 : {
682 : static constexpr std::string_view RoutineName("SizeElectricASHRAE205Chiller");
683 :
684 0 : bool ErrorsFound = false;
685 0 : Real64 tmpNomCap{0.0};
686 0 : Real64 tmpEvapVolFlowRate = this->EvapVolFlowRate;
687 0 : Real64 tmpCondVolFlowRate = this->CondVolFlowRate;
688 :
689 : // Size evaporator flow rate
690 : // find the appropriate Plant Sizing object
691 0 : int PltSizNum = this->CWPlantLoc.loop->PlantSizNum;
692 :
693 0 : if (PltSizNum > 0) {
694 0 : if (state.dataSize->PlantSizData(PltSizNum).DesVolFlowRate >= HVAC::SmallWaterVolFlow) {
695 0 : tmpEvapVolFlowRate = state.dataSize->PlantSizData(PltSizNum).DesVolFlowRate * this->SizFac;
696 : } else {
697 0 : if (this->EvapVolFlowRateWasAutoSized) tmpEvapVolFlowRate = 0.0;
698 : }
699 0 : if (state.dataPlnt->PlantFirstSizesOkayToFinalize) {
700 0 : if (this->EvapVolFlowRateWasAutoSized) {
701 0 : this->EvapVolFlowRate = tmpEvapVolFlowRate;
702 0 : if (state.dataPlnt->PlantFinalSizesOkayToReport) {
703 0 : BaseSizer::reportSizerOutput(
704 : state, this->ObjectType, this->Name, "Design Size Chilled Water Maximum Requested Flow Rate [m3/s]", tmpEvapVolFlowRate);
705 : }
706 0 : if (state.dataPlnt->PlantFirstSizesOkayToReport) {
707 0 : BaseSizer::reportSizerOutput(state,
708 : this->ObjectType,
709 : this->Name,
710 : "Initial Design Size Chilled Water Maximum Requested Flow Rate [m3/s]",
711 : tmpEvapVolFlowRate);
712 : }
713 : } else { // Hard-size with sizing data
714 0 : if (this->EvapVolFlowRate > 0.0 && tmpEvapVolFlowRate > 0.0) {
715 0 : Real64 EvapVolFlowRateUser = this->EvapVolFlowRate;
716 0 : if (state.dataPlnt->PlantFinalSizesOkayToReport) {
717 0 : BaseSizer::reportSizerOutput(state,
718 : this->ObjectType,
719 : this->Name,
720 : "Design Size Chilled Water Maximum Requested Flow Rate [m3/s]",
721 : tmpEvapVolFlowRate,
722 : "User-Specified Chilled Water Maximum Requested Flow Rate [m3/s]",
723 : EvapVolFlowRateUser);
724 0 : if (state.dataGlobal->DisplayExtraWarnings) {
725 0 : if ((std::abs(tmpEvapVolFlowRate - EvapVolFlowRateUser) / EvapVolFlowRateUser) >
726 0 : state.dataSize->AutoVsHardSizingThreshold) {
727 0 : ShowMessage(state, format("{}: Potential issue with equipment sizing for {}", RoutineName, this->Name));
728 0 : ShowContinueError(
729 0 : state, format("User-Specified Chilled Water Maximum Requested Flow Rate of {:.5R} [m3/s]", EvapVolFlowRateUser));
730 0 : ShowContinueError(state,
731 0 : format("differs from Design Size Chilled Water Maximum Requested Flow Rate of {:.5R} [m3/s]",
732 : tmpEvapVolFlowRate));
733 0 : ShowContinueError(state, "This may, or may not, indicate mismatched component sizes.");
734 0 : ShowContinueError(state, "Verify that the value entered is intended and is consistent with other components.");
735 : }
736 : }
737 : }
738 0 : tmpEvapVolFlowRate = EvapVolFlowRateUser;
739 : }
740 : }
741 : }
742 : } else {
743 0 : if (this->EvapVolFlowRateWasAutoSized && state.dataPlnt->PlantFirstSizesOkayToFinalize) {
744 0 : ShowSevereError(state, "Autosizing of Electric Chiller evap flow rate requires a loop Sizing:Plant object");
745 0 : ShowContinueError(state, format("Occurs in Electric Chiller object={}", this->Name));
746 0 : ErrorsFound = true;
747 : }
748 0 : if (!this->EvapVolFlowRateWasAutoSized && state.dataPlnt->PlantFinalSizesOkayToReport && (this->EvapVolFlowRate > 0.0)) {
749 0 : BaseSizer::reportSizerOutput(
750 : state, this->ObjectType, this->Name, "User-Specified Chilled Water Maximum Requested Flow Rate [m3/s]", this->EvapVolFlowRate);
751 : }
752 : }
753 :
754 0 : PlantUtilities::RegisterPlantCompDesignFlow(state, this->EvapInletNodeNum, tmpEvapVolFlowRate);
755 :
756 : // Size condenser flow rate
757 0 : int PltSizCondNum = this->CDPlantLoc.loop->PlantSizNum; // Change for air-cooled when it's supported
758 0 : if (PltSizCondNum > 0 && PltSizNum > 0) {
759 0 : if (state.dataSize->PlantSizData(PltSizNum).DesVolFlowRate >= HVAC::SmallWaterVolFlow && tmpNomCap > 0.0) {
760 :
761 0 : Real64 rho = this->CDPlantLoc.loop->glycol->getDensity(state, Constant::CWInitConvTemp, RoutineName);
762 0 : Real64 Cp = this->CDPlantLoc.loop->glycol->getSpecificHeat(state, this->TempRefCondIn, RoutineName);
763 0 : tmpCondVolFlowRate = tmpNomCap * (1.0 + (1.0 / this->RefCOP) * this->CompPowerToCondenserFrac) /
764 0 : (state.dataSize->PlantSizData(PltSizCondNum).DeltaT * Cp * rho);
765 :
766 : } else {
767 0 : if (this->CondVolFlowRateWasAutoSized) tmpCondVolFlowRate = 0.0;
768 : }
769 0 : if (state.dataPlnt->PlantFirstSizesOkayToFinalize) {
770 0 : if (this->CondVolFlowRateWasAutoSized) {
771 0 : this->CondVolFlowRate = tmpCondVolFlowRate;
772 0 : if (state.dataPlnt->PlantFinalSizesOkayToReport) {
773 0 : BaseSizer::reportSizerOutput(
774 : state, this->ObjectType, this->Name, "Design Size Condenser Maximum Requested Flow Rate [m3/s]", tmpCondVolFlowRate);
775 : }
776 0 : if (state.dataPlnt->PlantFirstSizesOkayToReport) {
777 0 : BaseSizer::reportSizerOutput(
778 : state, this->ObjectType, this->Name, "Initial Design Size Condenser Maximum Requested Flow Rate [m3/s]", tmpCondVolFlowRate);
779 : }
780 : } else {
781 0 : if (this->CondVolFlowRate > 0.0 && tmpCondVolFlowRate > 0.0) {
782 0 : Real64 CondVolFlowRateUser = this->CondVolFlowRate;
783 0 : if (state.dataPlnt->PlantFinalSizesOkayToReport) {
784 0 : BaseSizer::reportSizerOutput(state,
785 : this->ObjectType,
786 : this->Name,
787 : "Design Size Condenser Maximum Requested Flow Rate [m3/s]",
788 : tmpCondVolFlowRate,
789 : "User-Specified Condenser Maximum Requested Flow Rate [m3/s]",
790 : CondVolFlowRateUser);
791 0 : if (state.dataGlobal->DisplayExtraWarnings) {
792 0 : if ((std::abs(tmpCondVolFlowRate - CondVolFlowRateUser) / CondVolFlowRateUser) >
793 0 : state.dataSize->AutoVsHardSizingThreshold) {
794 0 : ShowMessage(state, format("{}: Potential issue with equipment sizing for {}", RoutineName, this->Name));
795 0 : ShowContinueError(
796 0 : state, format("User-Specified Condenser Maximum Requested Flow Rate of {:.5R} [m3/s]", CondVolFlowRateUser));
797 0 : ShowContinueError(
798 : state,
799 0 : format("differs from Design Size Condenser Maximum Requested Flow Rate of {:.5R} [m3/s]", tmpCondVolFlowRate));
800 0 : ShowContinueError(state, "This may, or may not, indicate mismatched component sizes.");
801 0 : ShowContinueError(state, "Verify that the value entered is intended and is consistent with other components.");
802 : }
803 : }
804 : }
805 0 : tmpCondVolFlowRate = CondVolFlowRateUser;
806 : }
807 : }
808 : }
809 0 : } else {
810 0 : if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
811 :
812 0 : if (this->CondVolFlowRateWasAutoSized && state.dataPlnt->PlantFirstSizesOkayToFinalize) {
813 0 : ShowSevereError(state, "Autosizing of Electric ASHRAE 205 Chiller condenser fluid flow rate requires a condenser");
814 0 : ShowContinueError(state, "loop Sizing:Plant object");
815 0 : ShowContinueError(state, format("Occurs in Electric ASHRAE 205 Chiller object={}", this->Name));
816 0 : ErrorsFound = true;
817 : }
818 0 : if (!this->CondVolFlowRateWasAutoSized && state.dataPlnt->PlantFinalSizesOkayToReport && (this->CondVolFlowRate > 0.0)) {
819 0 : BaseSizer::reportSizerOutput(
820 : state, this->ObjectType, this->Name, "User-Specified Condenser Maximum Requested Flow Rate [m3/s]", this->CondVolFlowRate);
821 : }
822 :
823 : } else {
824 :
825 : // Auto size condenser air flow to Total Capacity * 0.000114 m3/s/w (850 cfm/ton)
826 0 : if (state.dataPlnt->PlantFinalSizesOkayToReport) {
827 0 : std::string_view CompType =
828 : DataPlant::PlantEquipTypeNames[static_cast<int>(DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205)];
829 0 : state.dataSize->DataConstantUsedForSizing = this->RefCap;
830 0 : state.dataSize->DataFractionUsedForSizing = 0.000114;
831 0 : Real64 TempSize = this->CondVolFlowRate;
832 0 : bool bPRINT = true; // TRUE if sizing is reported to output (eio)
833 0 : AutoCalculateSizer sizerCondAirFlow;
834 0 : std::string stringOverride = "Condenser Maximum Requested Flow Rate [m3/s]";
835 0 : if (state.dataGlobal->isEpJSON) stringOverride = "condenser_maximum_requested_flow_rate [m3/s]";
836 0 : sizerCondAirFlow.overrideSizingString(stringOverride);
837 0 : sizerCondAirFlow.initializeWithinEP(state, CompType, this->Name, bPRINT, RoutineName);
838 0 : this->CondVolFlowRate = sizerCondAirFlow.size(state, TempSize, ErrorsFound);
839 0 : }
840 : }
841 : }
842 :
843 : // save the reference condenser water volumetric flow rate for use by the condenser water loop sizing algorithms
844 0 : PlantUtilities::RegisterPlantCompDesignFlow(state, this->CondInletNodeNum, tmpCondVolFlowRate);
845 :
846 : // Calculate design evaporator capacity (eventually add autosize here too)
847 :
848 : // TODO: Determine actual rated flow rates instead of design flow rates
849 0 : this->RefCap = this->Representation->performance.performance_map_cooling
850 0 : .calculate_performance(this->EvapVolFlowRate,
851 0 : this->TempRefEvapOut + Constant::Kelvin,
852 : this->CondVolFlowRate,
853 0 : this->TempRefCondIn + Constant::Kelvin,
854 0 : this->MaxSequenceNumber,
855 : this->InterpolationType)
856 0 : .net_evaporator_capacity;
857 :
858 0 : if (PltSizNum > 0) {
859 0 : if (state.dataSize->PlantSizData(PltSizNum).DesVolFlowRate >= HVAC::SmallWaterVolFlow) {
860 0 : Real64 Cp = this->CWPlantLoc.loop->glycol->getSpecificHeat(state, Constant::CWInitConvTemp, RoutineName);
861 :
862 0 : Real64 rho = this->CWPlantLoc.loop->glycol->getDensity(state, Constant::CWInitConvTemp, RoutineName);
863 0 : tmpNomCap = Cp * rho * state.dataSize->PlantSizData(PltSizNum).DeltaT * tmpEvapVolFlowRate;
864 : } else {
865 0 : tmpNomCap = 0.0;
866 : }
867 0 : if (state.dataPlnt->PlantFirstSizesOkayToFinalize) {
868 0 : if (this->RefCapWasAutoSized) {
869 0 : this->RefCap = tmpNomCap;
870 0 : if (state.dataPlnt->PlantFinalSizesOkayToReport) {
871 0 : BaseSizer::reportSizerOutput(state, this->ObjectType, this->Name, "Design Size Rated Capacity [W]", tmpNomCap);
872 : }
873 0 : if (state.dataPlnt->PlantFirstSizesOkayToReport) {
874 0 : BaseSizer::reportSizerOutput(state, this->ObjectType, this->Name, "Initial Design Size Rated Capacity [W]", tmpNomCap);
875 : }
876 : } else { // Hard-sized with sizing data
877 0 : if (this->RefCap > 0.0 && tmpNomCap > 0.0) {
878 0 : Real64 RefCapUser = this->RefCap;
879 0 : if (state.dataPlnt->PlantFinalSizesOkayToReport) {
880 0 : BaseSizer::reportSizerOutput(state,
881 : this->ObjectType,
882 : this->Name,
883 : "Design Size Rated Capacity [W]",
884 : tmpNomCap,
885 : "User-Specified Rated Capacity [W]",
886 : RefCapUser);
887 0 : if (state.dataGlobal->DisplayExtraWarnings) {
888 0 : if ((std::abs(tmpNomCap - RefCapUser) / RefCapUser) > state.dataSize->AutoVsHardSizingThreshold) {
889 0 : ShowMessage(state, format("{}: Potential issue with equipment sizing for {}", RoutineName, this->Name));
890 0 : ShowContinueError(state, format("User-Specified Rated Capacity of {:.2R} [W]", RefCapUser));
891 0 : ShowContinueError(state, format("differs from Design Size Rated Capacity of {:.2R} [W]", tmpNomCap));
892 0 : ShowContinueError(state, "This may, or may not, indicate mismatched component sizes.");
893 0 : ShowContinueError(state, "Verify that the value entered is intended and is consistent with other components.");
894 : }
895 : }
896 : }
897 0 : tmpNomCap = RefCapUser;
898 : }
899 : }
900 : }
901 : } else {
902 0 : if (this->RefCapWasAutoSized && state.dataPlnt->PlantFirstSizesOkayToFinalize) {
903 0 : ShowSevereError(state, "Autosizing of Electric Chiller reference capacity requires a loop Sizing:Plant object");
904 0 : ShowContinueError(state, format("Occurs in Electric Chiller object={}", this->Name));
905 0 : ErrorsFound = true;
906 : }
907 0 : if (!this->RefCapWasAutoSized && state.dataPlnt->PlantFinalSizesOkayToReport && (this->RefCap > 0.0)) { // Hard-sized with no sizing data
908 0 : BaseSizer::reportSizerOutput(state, this->ObjectType, this->Name, "User-Specified Rated Capacity [W]", this->RefCap);
909 : }
910 : }
911 :
912 0 : if (this->OilCoolerInletNode) {
913 0 : PlantUtilities::RegisterPlantCompDesignFlow(state, this->OilCoolerInletNode, this->OilCoolerVolFlowRate);
914 : }
915 :
916 0 : if (this->AuxiliaryHeatInletNode) {
917 0 : PlantUtilities::RegisterPlantCompDesignFlow(state, this->AuxiliaryHeatInletNode, this->AuxiliaryVolFlowRate);
918 : }
919 :
920 0 : if (state.dataPlnt->PlantFinalSizesOkayToReport) {
921 : // create predefined report
922 0 : OutputReportPredefined::PreDefTableEntry(state, state.dataOutRptPredefined->pdchMechType, this->Name, this->ObjectType);
923 0 : OutputReportPredefined::PreDefTableEntry(state, state.dataOutRptPredefined->pdchMechNomEff, this->Name, this->RefCOP);
924 0 : OutputReportPredefined::PreDefTableEntry(state, state.dataOutRptPredefined->pdchMechNomCap, this->Name, this->RefCap);
925 : }
926 :
927 0 : if (ErrorsFound) {
928 0 : ShowFatalError(state, "Preceding sizing errors cause program termination");
929 : }
930 0 : }
931 :
932 0 : void ASHRAE205ChillerSpecs::setOutputVariables(EnergyPlusData &state)
933 : {
934 0 : SetupOutputVariable(state,
935 : "Chiller Part Load Ratio",
936 : Constant::Units::None,
937 0 : this->ChillerPartLoadRatio,
938 : OutputProcessor::TimeStepType::System,
939 : OutputProcessor::StoreType::Average,
940 0 : this->Name);
941 :
942 0 : SetupOutputVariable(state,
943 : "Chiller Cycling Ratio",
944 : Constant::Units::None,
945 0 : this->ChillerCyclingRatio,
946 : OutputProcessor::TimeStepType::System,
947 : OutputProcessor::StoreType::Average,
948 0 : this->Name);
949 :
950 0 : SetupOutputVariable(state,
951 : "Minimum Part Load Ratio",
952 : Constant::Units::None,
953 0 : this->MinPartLoadRat,
954 : OutputProcessor::TimeStepType::System,
955 : OutputProcessor::StoreType::Average,
956 0 : this->Name);
957 :
958 0 : SetupOutputVariable(state,
959 : "Chiller Electricity Rate",
960 : Constant::Units::W,
961 0 : this->Power,
962 : OutputProcessor::TimeStepType::System,
963 : OutputProcessor::StoreType::Average,
964 0 : this->Name);
965 :
966 0 : SetupOutputVariable(state,
967 : "Chiller Electricity Energy",
968 : Constant::Units::J,
969 0 : this->Energy,
970 : OutputProcessor::TimeStepType::System,
971 : OutputProcessor::StoreType::Sum,
972 0 : this->Name,
973 : Constant::eResource::Electricity,
974 : OutputProcessor::Group::Plant,
975 : OutputProcessor::EndUseCat::Cooling,
976 : this->EndUseSubcategory);
977 :
978 0 : SetupOutputVariable(state,
979 : "Chiller Evaporator Cooling Rate",
980 : Constant::Units::W,
981 0 : this->QEvaporator,
982 : OutputProcessor::TimeStepType::System,
983 : OutputProcessor::StoreType::Average,
984 0 : this->Name);
985 :
986 0 : SetupOutputVariable(state,
987 : "Chiller Evaporator Cooling Energy",
988 : Constant::Units::J,
989 0 : this->EvapEnergy,
990 : OutputProcessor::TimeStepType::System,
991 : OutputProcessor::StoreType::Sum,
992 0 : this->Name,
993 : Constant::eResource::EnergyTransfer,
994 : OutputProcessor::Group::Plant,
995 : OutputProcessor::EndUseCat::Chillers);
996 :
997 0 : SetupOutputVariable(state,
998 : "Chiller Evaporator Inlet Temperature",
999 : Constant::Units::C,
1000 0 : this->EvapInletTemp,
1001 : OutputProcessor::TimeStepType::System,
1002 : OutputProcessor::StoreType::Average,
1003 0 : this->Name);
1004 :
1005 0 : SetupOutputVariable(state,
1006 : "Chiller Evaporator Outlet Temperature",
1007 : Constant::Units::C,
1008 0 : this->EvapOutletTemp,
1009 : OutputProcessor::TimeStepType::System,
1010 : OutputProcessor::StoreType::Average,
1011 0 : this->Name);
1012 :
1013 0 : SetupOutputVariable(state,
1014 : "Chiller Evaporator Mass Flow Rate",
1015 : Constant::Units::kg_s,
1016 0 : this->EvapMassFlowRate,
1017 : OutputProcessor::TimeStepType::System,
1018 : OutputProcessor::StoreType::Average,
1019 0 : this->Name);
1020 :
1021 0 : SetupOutputVariable(state,
1022 : "Chiller Condenser Heat Transfer Rate",
1023 : Constant::Units::W,
1024 0 : this->QCondenser,
1025 : OutputProcessor::TimeStepType::System,
1026 : OutputProcessor::StoreType::Average,
1027 0 : this->Name);
1028 :
1029 0 : SetupOutputVariable(state,
1030 : "Chiller Condenser Heat Transfer Energy",
1031 : Constant::Units::J,
1032 0 : this->CondEnergy,
1033 : OutputProcessor::TimeStepType::System,
1034 : OutputProcessor::StoreType::Sum,
1035 0 : this->Name,
1036 : Constant::eResource::EnergyTransfer,
1037 : OutputProcessor::Group::Plant,
1038 : OutputProcessor::EndUseCat::HeatRejection);
1039 :
1040 0 : SetupOutputVariable(state,
1041 : "Chiller COP",
1042 : Constant::Units::W_W,
1043 0 : this->ActualCOP,
1044 : OutputProcessor::TimeStepType::System,
1045 : OutputProcessor::StoreType::Average,
1046 0 : this->Name);
1047 :
1048 0 : SetupOutputVariable(state,
1049 : "Chiller Condenser Inlet Temperature",
1050 : Constant::Units::C,
1051 0 : this->CondInletTemp,
1052 : OutputProcessor::TimeStepType::System,
1053 : OutputProcessor::StoreType::Average,
1054 0 : this->Name);
1055 :
1056 0 : SetupOutputVariable(state,
1057 : "Chiller Condenser Outlet Temperature",
1058 : Constant::Units::C,
1059 0 : this->CondOutletTemp,
1060 : OutputProcessor::TimeStepType::System,
1061 : OutputProcessor::StoreType::Average,
1062 0 : this->Name);
1063 :
1064 0 : SetupOutputVariable(state,
1065 : "Chiller Condenser Mass Flow Rate",
1066 : Constant::Units::kg_s,
1067 0 : this->CondMassFlowRate,
1068 : OutputProcessor::TimeStepType::System,
1069 : OutputProcessor::StoreType::Average,
1070 0 : this->Name);
1071 :
1072 0 : SetupOutputVariable(state,
1073 : "Chiller Effective Heat Rejection Temperature",
1074 : Constant::Units::C,
1075 0 : this->ChillerCondAvgTemp,
1076 : OutputProcessor::TimeStepType::System,
1077 : OutputProcessor::StoreType::Average,
1078 0 : this->Name);
1079 :
1080 0 : SetupOutputVariable(state,
1081 : "Chiller Zone Heat Gain Rate",
1082 : Constant::Units::W,
1083 0 : this->AmbientZoneGain,
1084 : OutputProcessor::TimeStepType::System,
1085 : OutputProcessor::StoreType::Average,
1086 0 : this->Name);
1087 :
1088 0 : SetupOutputVariable(state,
1089 : "Chiller Zone Heat Gain Energy",
1090 : Constant::Units::J,
1091 0 : this->AmbientZoneGainEnergy,
1092 : OutputProcessor::TimeStepType::System,
1093 : OutputProcessor::StoreType::Sum,
1094 0 : this->Name);
1095 :
1096 0 : SetupOutputVariable(state,
1097 : "Oil Cooler Heat Transfer Rate",
1098 : Constant::Units::W,
1099 0 : this->QOilCooler,
1100 : OutputProcessor::TimeStepType::System,
1101 : OutputProcessor::StoreType::Average,
1102 0 : this->Name);
1103 :
1104 0 : SetupOutputVariable(state,
1105 : "Oil Cooler Heat Transfer Energy",
1106 : Constant::Units::J,
1107 0 : this->OilCoolerEnergy,
1108 : OutputProcessor::TimeStepType::System,
1109 : OutputProcessor::StoreType::Sum,
1110 0 : this->Name);
1111 :
1112 0 : SetupOutputVariable(state,
1113 : "Auxiliary Heat Transfer Rate",
1114 : Constant::Units::W,
1115 0 : this->QAuxiliary,
1116 : OutputProcessor::TimeStepType::System,
1117 : OutputProcessor::StoreType::Average,
1118 0 : this->Name);
1119 :
1120 0 : SetupOutputVariable(state,
1121 : "Auxiliary Heat Transfer Energy",
1122 : Constant::Units::J,
1123 0 : this->AuxiliaryEnergy,
1124 : OutputProcessor::TimeStepType::System,
1125 : OutputProcessor::StoreType::Sum,
1126 0 : this->Name);
1127 0 : }
1128 :
1129 0 : void ASHRAE205ChillerSpecs::findEvaporatorMassFlowRate(EnergyPlusData &state, Real64 &load, Real64 Cp)
1130 : {
1131 : static constexpr std::string_view RoutineName("ASHRAE205ChillerSpecs::findEvaporatorMassFlowRate");
1132 :
1133 : // If FlowLock is False (0), the chiller sets the plant loop mdot
1134 : // If FlowLock is True (1), the new resolved plant loop mdot is used
1135 0 : if (this->CWPlantLoc.side->FlowLock == DataPlant::FlowLock::Unlocked) {
1136 0 : this->PossibleSubcooling = !(this->CWPlantLoc.comp->CurOpSchemeType == DataPlant::OpScheme::CompSetPtBased);
1137 :
1138 0 : Real64 evapDeltaTemp(0.0); // Evaporator temperature difference [C]
1139 :
1140 : // Either set the flow to the Constant value or calculate the flow for the variable volume case
1141 0 : if ((this->FlowMode == DataPlant::FlowMode::Constant) || (this->FlowMode == DataPlant::FlowMode::NotModulated)) {
1142 : // Set the evaporator mass flow rate to design
1143 : // Start by assuming max (design) flow
1144 0 : this->EvapMassFlowRate = this->EvapMassFlowRateMax;
1145 : // Use PlantUtilities::SetComponentFlowRate to decide actual flow
1146 0 : PlantUtilities::SetComponentFlowRate(state, this->EvapMassFlowRate, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
1147 0 : if (this->EvapMassFlowRate != 0.0) {
1148 0 : evapDeltaTemp = std::abs(load) / this->EvapMassFlowRate / Cp; // MyLoad = net evaporator capacity, QEvaporator
1149 : } else {
1150 0 : evapDeltaTemp = 0.0;
1151 : }
1152 0 : this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp - evapDeltaTemp;
1153 0 : } else if (this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) {
1154 0 : switch (this->CWPlantLoc.loop->LoopDemandCalcScheme) {
1155 0 : case DataPlant::LoopDemandCalcScheme::SingleSetPoint: {
1156 : // Calculate the Delta Temp from the inlet temp to the chiller outlet setpoint
1157 0 : evapDeltaTemp =
1158 0 : state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp - state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint;
1159 0 : } break;
1160 0 : case DataPlant::LoopDemandCalcScheme::DualSetPointDeadBand: {
1161 0 : evapDeltaTemp =
1162 0 : state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp - state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi;
1163 0 : } break;
1164 0 : default: {
1165 0 : assert(false);
1166 : } break;
1167 : }
1168 :
1169 0 : if (evapDeltaTemp != 0) {
1170 0 : this->EvapMassFlowRate = max(0.0, (std::abs(load) / Cp / evapDeltaTemp));
1171 0 : if ((this->EvapMassFlowRate - this->EvapMassFlowRateMax) > DataBranchAirLoopPlant::MassFlowTolerance) this->PossibleSubcooling = true;
1172 : // Check to see if the Maximum is exceeded, if so set to maximum
1173 0 : this->EvapMassFlowRate = min(this->EvapMassFlowRateMax, this->EvapMassFlowRate);
1174 : // Use PlantUtilities::SetComponentFlowRate to decide actual flow
1175 0 : PlantUtilities::SetComponentFlowRate(
1176 0 : state, this->EvapMassFlowRate, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
1177 : // Should we recalculate this with the corrected setpoint?
1178 0 : switch (this->CWPlantLoc.loop->LoopDemandCalcScheme) {
1179 0 : case DataPlant::LoopDemandCalcScheme::SingleSetPoint: {
1180 0 : this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint;
1181 0 : } break;
1182 0 : case DataPlant::LoopDemandCalcScheme::DualSetPointDeadBand: {
1183 0 : this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi;
1184 0 : } break;
1185 0 : default:
1186 0 : break;
1187 : }
1188 : } else {
1189 : // Try to request zero flow
1190 0 : this->EvapMassFlowRate = 0.0;
1191 : // Use PlantUtilities::SetComponentFlowRate to decide actual flow
1192 0 : PlantUtilities::SetComponentFlowRate(
1193 0 : state, this->EvapMassFlowRate, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
1194 : // No deltaT since component is not running
1195 0 : this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp;
1196 0 : this->QEvaporator = 0.0;
1197 : // PartLoadRat = 0.0;
1198 0 : this->ChillerPartLoadRatio = 0.0;
1199 :
1200 0 : if (this->DeltaTErrCount < 1 && !state.dataGlobal->WarmupFlag) {
1201 0 : ++this->DeltaTErrCount;
1202 0 : ShowWarningError(state, "Evaporator DeltaTemp = 0 in mass flow calculation (Tevapin = Tevapout setpoint temp).");
1203 0 : ShowContinueErrorTimeStamp(state, "");
1204 0 : } else if (!state.dataGlobal->WarmupFlag) {
1205 0 : ++this->ChillerCapFTError;
1206 0 : ShowRecurringWarningErrorAtEnd(
1207 : state,
1208 0 : format("{} \"{}\": Evaporator DeltaTemp = 0 in mass flow calculation warning continues...", this->ObjectType, this->Name),
1209 0 : this->DeltaTErrCountIndex,
1210 : evapDeltaTemp,
1211 : evapDeltaTemp);
1212 : }
1213 : }
1214 : }
1215 : } else { // If FlowLock is True
1216 0 : this->EvapMassFlowRate = state.dataLoopNodes->Node(this->EvapInletNodeNum).MassFlowRate;
1217 0 : PlantUtilities::SetComponentFlowRate(state, this->EvapMassFlowRate, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
1218 : // Some other component set the flow to 0. No reason to continue with calculations.
1219 0 : if (this->EvapMassFlowRate == 0.0) {
1220 0 : load = 0.0;
1221 0 : return;
1222 : }
1223 : } // This is the end of the FlowLock Block
1224 :
1225 0 : const Real64 rho = this->CWPlantLoc.loop->glycol->getDensity(state, Constant::CWInitConvTemp, RoutineName);
1226 :
1227 0 : this->EvapVolFlowRate = this->EvapMassFlowRate / rho;
1228 : }
1229 :
1230 0 : void ASHRAE205ChillerSpecs::calculate(EnergyPlusData &state, Real64 &MyLoad, bool const RunFlag)
1231 : {
1232 : static constexpr std::string_view RoutineName("CalcElecASHRAE205ChillerModel");
1233 0 : this->ChillerPartLoadRatio = 0.0;
1234 0 : this->ChillerCyclingRatio = 1.0;
1235 0 : this->ChillerFalseLoadRate = 0.0;
1236 0 : this->EvapMassFlowRate = 0.0;
1237 0 : this->CondMassFlowRate = 0.0;
1238 0 : this->Power = 0.0;
1239 0 : this->QCondenser = 0.0;
1240 0 : this->QEvaporator = 0.0;
1241 0 : this->QOilCooler = 0.0;
1242 0 : this->QAuxiliary = 0.0;
1243 0 : int PlantLoopNum = this->CWPlantLoc.loopNum;
1244 0 : DataPlant::LoopSideLocation LoopSideNum = this->CWPlantLoc.loopSideNum;
1245 0 : int BranchNum = this->CWPlantLoc.branchNum;
1246 0 : int CompNum = this->CWPlantLoc.compNum;
1247 :
1248 : // Set module-level chiller evaporator and condenser inlet temperature variables
1249 : // using prior time step's temperature
1250 0 : Real64 condInletTemp = state.dataLoopNodes->Node(this->CondInletNodeNum).Temp;
1251 0 : this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapOutletNodeNum).Temp;
1252 :
1253 : // If no loop demand or chiller OFF, return
1254 : // If chiller load is 0 or chiller is not running then leave the subroutine. Before leaving
1255 : // if the component control is SERIESACTIVE we set the component flow to inlet flow so that
1256 : // flow resolver will not shut down the branch
1257 :
1258 : // Calculate performance for standby (only used when off or cycling)
1259 : Real64 standbyPower =
1260 0 : this->Representation->performance.performance_map_standby.calculate_performance(this->AmbientTemp, this->InterpolationType).input_power;
1261 0 : if (MyLoad >= 0 || !RunFlag) {
1262 0 : if (this->EquipFlowCtrl == DataBranchAirLoopPlant::ControlType::SeriesActive ||
1263 0 : this->CWPlantLoc.side->FlowLock == DataPlant::FlowLock::Locked) {
1264 0 : this->EvapMassFlowRate = state.dataLoopNodes->Node(this->EvapInletNodeNum).MassFlowRate;
1265 : }
1266 0 : if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
1267 0 : if (this->CDPlantLoc.comp->FlowCtrl == DataBranchAirLoopPlant::ControlType::SeriesActive) {
1268 0 : this->CondMassFlowRate = state.dataLoopNodes->Node(this->CondInletNodeNum).MassFlowRate;
1269 : }
1270 : }
1271 0 : this->Power = standbyPower;
1272 0 : this->AmbientZoneGain = standbyPower;
1273 0 : return;
1274 : }
1275 :
1276 : // Revisit
1277 : #if 0
1278 : // // If there is a fault of chiller fouling
1279 : // if (this->FaultyChillerFoulingFlag && (!state.dataGlobal->WarmupFlag) && (!state.dataGlobal->DoingSizing) &&
1280 : // (!state.dataGlobal->KickOffSimulation)) {
1281 : // int FaultIndex = this->FaultyChillerFoulingIndex;
1282 : // Real64 NomCap_ff = ChillerRefCap;
1283 : // Real64 ReferenceCOP_ff = ReferenceCOP;
1284 : //
1285 : // // calculate the Faulty Chiller Fouling Factor using fault information
1286 : // this->FaultyChillerFoulingFactor = state.dataFaultsMgr->FaultsChillerFouling(FaultIndex).CalFoulingFactor(state);
1287 : //
1288 : // // update the Chiller nominal capacity and COP at faulty cases
1289 : // ChillerRefCap = NomCap_ff * this->FaultyChillerFoulingFactor;
1290 : // ReferenceCOP = ReferenceCOP_ff * this->FaultyChillerFoulingFactor;
1291 : // }
1292 : #endif // 0
1293 :
1294 : // Set mass flow rates
1295 0 : if (this->CondenserType == DataPlant::CondenserType::WaterCooled) {
1296 0 : this->CondMassFlowRate = this->CondMassFlowRateMax;
1297 0 : PlantUtilities::SetComponentFlowRate(state, this->CondMassFlowRate, this->CondInletNodeNum, this->CondOutletNodeNum, this->CDPlantLoc);
1298 0 : PlantUtilities::PullCompInterconnectTrigger(
1299 0 : state, this->CWPlantLoc, this->CondMassFlowIndex, this->CDPlantLoc, DataPlant::CriteriaType::MassFlowRate, this->CondMassFlowRate);
1300 :
1301 0 : if (this->CondMassFlowRate < DataBranchAirLoopPlant::MassFlowTolerance) {
1302 0 : MyLoad = 0.0;
1303 0 : this->Power = standbyPower;
1304 0 : this->AmbientZoneGain = standbyPower;
1305 0 : this->EvapMassFlowRate = 0.0;
1306 0 : PlantUtilities::SetComponentFlowRate(state, this->EvapMassFlowRate, this->EvapInletNodeNum, this->EvapOutletNodeNum, this->CWPlantLoc);
1307 0 : return;
1308 : }
1309 : }
1310 0 : Real64 EvapOutletTempSetPoint(0.0); // Evaporator outlet temperature setpoint [C]
1311 0 : switch (this->CWPlantLoc.loop->LoopDemandCalcScheme) {
1312 0 : case DataPlant::LoopDemandCalcScheme::SingleSetPoint: {
1313 0 : if ((this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) ||
1314 0 : (this->CWPlantLoc.comp->CurOpSchemeType == DataPlant::OpScheme::CompSetPtBased) ||
1315 0 : (state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint != DataLoopNode::SensedNodeFlagValue)) {
1316 : // there will be a valid setpoint on outlet
1317 0 : EvapOutletTempSetPoint = state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPoint;
1318 : } else { // use plant loop overall setpoint
1319 0 : EvapOutletTempSetPoint = state.dataLoopNodes->Node(this->CWPlantLoc.loop->TempSetPointNodeNum).TempSetPoint;
1320 : }
1321 0 : } break;
1322 0 : case DataPlant::LoopDemandCalcScheme::DualSetPointDeadBand: {
1323 0 : if ((this->FlowMode == DataPlant::FlowMode::LeavingSetpointModulated) ||
1324 0 : (this->CWPlantLoc.comp->CurOpSchemeType == DataPlant::OpScheme::CompSetPtBased) ||
1325 0 : (state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi != DataLoopNode::SensedNodeFlagValue)) {
1326 : // there will be a valid setpoint on outlet
1327 0 : EvapOutletTempSetPoint = state.dataLoopNodes->Node(this->EvapOutletNodeNum).TempSetPointHi;
1328 : } else { // use plant loop overall setpoint
1329 0 : EvapOutletTempSetPoint = state.dataLoopNodes->Node(this->CWPlantLoc.loop->TempSetPointNodeNum).TempSetPointHi;
1330 : }
1331 0 : } break;
1332 0 : default: {
1333 0 : assert(false);
1334 : } break;
1335 : }
1336 : // Revisit
1337 : #if 0
1338 : // // If there is a fault of Chiller SWT Sensor
1339 : // if (this->FaultyChillerSWTFlag && (!state.dataGlobal->WarmupFlag) && (!state.dataGlobal->DoingSizing) && (!state.dataGlobal->KickOffSimulation)) {
1340 : // int FaultIndex = this->FaultyChillerSWTIndex;
1341 : // Real64 EvapOutletTempSetPoint_ff = EvapOutletTempSetPoint;
1342 : //
1343 : // // calculate the sensor offset using fault information
1344 : // this->FaultyChillerSWTOffset = state.dataFaultsMgr->FaultsChillerSWTSensor(FaultIndex).CalFaultOffsetAct(state);
1345 : // // update the EvapOutletTempSetPoint
1346 : // EvapOutletTempSetPoint =
1347 : // max(this->TempLowLimitEvapOut,
1348 : // min(state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp, EvapOutletTempSetPoint_ff - this->FaultyChillerSWTOffset));
1349 : // this->FaultyChillerSWTOffset = EvapOutletTempSetPoint_ff - EvapOutletTempSetPoint;
1350 : // }
1351 : #endif // 0
1352 : // When implemented, TODO: correct temperature if using heat recovery
1353 :
1354 0 : this->EvapMassFlowRate = state.dataLoopNodes->Node(this->EvapInletNodeNum).MassFlowRate;
1355 : // If some other component set the flow to 0, no reason to continue with calculations.
1356 0 : if (this->EvapMassFlowRate == 0.0) {
1357 0 : MyLoad = 0.0;
1358 0 : return;
1359 : }
1360 :
1361 0 : Real64 CpEvap = this->CWPlantLoc.loop->glycol->getSpecificHeat(state, state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp, RoutineName);
1362 :
1363 : // Calculate mass flow rate based on MyLoad (TODO: then adjust it after determining if chiller can meet the load)
1364 0 : this->findEvaporatorMassFlowRate(state, MyLoad, CpEvap);
1365 :
1366 : // Available chiller capacity is capacity at the highest sequence number; i.e. max chiller capacity
1367 0 : const Real64 maximumChillerCap = this->Representation->performance.performance_map_cooling
1368 0 : .calculate_performance(this->EvapVolFlowRate,
1369 0 : this->EvapOutletTemp + Constant::Kelvin,
1370 : this->CondVolFlowRate,
1371 0 : this->CondInletTemp + Constant::Kelvin,
1372 0 : this->MaxSequenceNumber,
1373 : this->InterpolationType)
1374 0 : .net_evaporator_capacity;
1375 0 : const Real64 minimumChillerCap = this->Representation->performance.performance_map_cooling
1376 0 : .calculate_performance(this->EvapVolFlowRate,
1377 0 : this->EvapOutletTemp + Constant::Kelvin,
1378 : this->CondVolFlowRate,
1379 0 : this->CondInletTemp + Constant::Kelvin,
1380 0 : this->MinSequenceNumber,
1381 : this->InterpolationType)
1382 0 : .net_evaporator_capacity;
1383 : // Part load ratio based on load and available chiller capacity; cap at max P.L.R. (can be >1)
1384 0 : this->ChillerPartLoadRatio = (maximumChillerCap > 0) ? max(0.0, std::abs(MyLoad) / maximumChillerCap) : 0.0;
1385 : // Minimum capacity ratio, under which cycling occurs
1386 0 : this->MinPartLoadRat = (maximumChillerCap > 0) ? minimumChillerCap / maximumChillerCap : 0.0;
1387 0 : Real64 partLoadSeqNum{0.};
1388 :
1389 : // Chiller may be operating in one of three modes: cycling, modulating, or full capacity
1390 0 : if (this->ChillerPartLoadRatio < this->MinPartLoadRat) // Cycling
1391 : {
1392 0 : this->ChillerCyclingRatio = this->ChillerPartLoadRatio / this->MinPartLoadRat;
1393 0 : partLoadSeqNum = this->MinSequenceNumber;
1394 0 : } else if (this->ChillerPartLoadRatio < 1.0) // Modulating
1395 : {
1396 : // Use performance map to find the fractional sequence number (which most closely matches our part load)
1397 0 : Real64 constexpr accuracy{0.0001};
1398 0 : int constexpr maxIter{500};
1399 0 : int solFla{0};
1400 0 : auto f = [MyLoad, this](Real64 partLoadSeqNum) {
1401 0 : this->QEvaporator = this->Representation->performance.performance_map_cooling
1402 0 : .calculate_performance(this->EvapVolFlowRate,
1403 0 : this->EvapOutletTemp + Constant::Kelvin,
1404 0 : this->CondVolFlowRate,
1405 0 : this->CondInletTemp + Constant::Kelvin,
1406 : partLoadSeqNum,
1407 0 : this->InterpolationType)
1408 0 : .net_evaporator_capacity;
1409 0 : return std::abs(MyLoad) - this->QEvaporator;
1410 0 : };
1411 : // Iteratively calculate this->QEvaporator by modulating partLoadSeqNum, ending at Q_Evaporator(partLoadSeqNum)
1412 0 : General::SolveRoot(state, accuracy, maxIter, solFla, partLoadSeqNum, f, this->MinSequenceNumber, this->MaxSequenceNumber);
1413 : } else // Full capacity: std::abs(MyLoad) > this->QEvaporator
1414 : {
1415 0 : this->QEvaporator = maximumChillerCap;
1416 0 : partLoadSeqNum = this->MaxSequenceNumber;
1417 : // SolveRoot stuff for eventual flow rate (can always calculate Ts if you have MFR and capacity)
1418 : // recursion? Revisit.
1419 0 : findEvaporatorMassFlowRate(state, this->QEvaporator, CpEvap);
1420 : // if MFR changes, recalculate chiller capacity.
1421 : // repeat until load <= capacity
1422 : }
1423 :
1424 : // Use performance map to get the rest of results at new sequence number
1425 : auto lookupVariablesCooling = // This is a struct returned by value, relying on RVO (THIS_AUTO_OK)
1426 0 : this->Representation->performance.performance_map_cooling.calculate_performance(this->EvapVolFlowRate,
1427 0 : this->EvapOutletTemp + Constant::Kelvin,
1428 : this->CondVolFlowRate,
1429 0 : this->CondInletTemp + Constant::Kelvin,
1430 : partLoadSeqNum,
1431 : this->InterpolationType);
1432 0 : this->QEvaporator = lookupVariablesCooling.net_evaporator_capacity * this->ChillerCyclingRatio;
1433 :
1434 0 : Real64 evapDeltaTemp = this->QEvaporator / this->EvapMassFlowRate / CpEvap;
1435 0 : this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp - evapDeltaTemp;
1436 :
1437 : // TODO: Revisit fault
1438 : #if 0
1439 : // If there is a fault of Chiller SWT Sensor
1440 : if (this->FaultyChillerSWTFlag && (!state.dataGlobal->WarmupFlag) && (!state.dataGlobal->DoingSizing) &&
1441 : (!state.dataGlobal->KickOffSimulation) && (this->EvapMassFlowRate > 0)) {
1442 : // calculate directly affected variables at faulty case: EvapOutletTemp, EvapMassFlowRate, QEvaporator
1443 : int FaultIndex = this->FaultyChillerSWTIndex;
1444 : bool VarFlowFlag = false;
1445 : state.dataFaultsMgr->FaultsChillerSWTSensor(FaultIndex)
1446 : .CalFaultChillerSWT(VarFlowFlag,
1447 : this->FaultyChillerSWTOffset,
1448 : Cp,
1449 : state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp,
1450 : this->EvapOutletTemp,
1451 : this->EvapMassFlowRate,
1452 : this->QEvaporator);
1453 : // update corresponding variables at faulty case
1454 : }
1455 : #endif // 0
1456 :
1457 0 : Real64 cd = this->Representation->performance.cycling_degradation_coefficient;
1458 0 : Real64 cyclingFactor{(1.0 - cd) + (cd * this->ChillerCyclingRatio)};
1459 0 : Real64 runtimeFactor{this->ChillerCyclingRatio / cyclingFactor};
1460 0 : this->Power = lookupVariablesCooling.input_power * runtimeFactor + ((1 - this->ChillerCyclingRatio) * standbyPower);
1461 0 : this->QCondenser = lookupVariablesCooling.net_condenser_capacity * this->ChillerCyclingRatio;
1462 0 : this->QOilCooler = lookupVariablesCooling.oil_cooler_heat;
1463 0 : this->QAuxiliary = lookupVariablesCooling.auxiliary_heat;
1464 0 : Real64 QExternallyCooled{0.0};
1465 0 : if (this->OilCoolerInletNode) {
1466 0 : QExternallyCooled += this->QOilCooler;
1467 : }
1468 0 : if (this->AuxiliaryHeatInletNode) {
1469 0 : QExternallyCooled += this->QAuxiliary;
1470 : }
1471 : // Energy balance on the chiller system gives the amount of heat lost to the ambient zone
1472 0 : this->AmbientZoneGain = this->QEvaporator + this->Power - (this->QCondenser + QExternallyCooled);
1473 :
1474 0 : Real64 CpCond = this->CDPlantLoc.loop->glycol->getSpecificHeat(state, condInletTemp, RoutineName);
1475 0 : this->CondOutletTemp = this->QCondenser / this->CondMassFlowRate / CpCond + condInletTemp;
1476 :
1477 : // Oil cooler and Auxiliary Heat delta-T calculations
1478 0 : if (this->OilCoolerInletNode) {
1479 0 : Real64 oilCoolerDeltaTemp = 0.0;
1480 0 : PlantUtilities::SetComponentFlowRate(
1481 0 : state, this->OilCoolerMassFlowRate, this->OilCoolerInletNode, this->OilCoolerOutletNode, this->OCPlantLoc);
1482 :
1483 : Real64 CpOilCooler =
1484 0 : this->OCPlantLoc.loop->glycol->getSpecificHeat(state, state.dataLoopNodes->Node(this->OilCoolerInletNode).Temp, RoutineName);
1485 :
1486 0 : if (this->OilCoolerMassFlowRate != 0.0) {
1487 0 : oilCoolerDeltaTemp = this->QOilCooler / (this->OilCoolerMassFlowRate * CpOilCooler);
1488 : } else {
1489 0 : oilCoolerDeltaTemp = 0.0;
1490 : }
1491 0 : state.dataLoopNodes->Node(this->OilCoolerOutletNode).Temp = state.dataLoopNodes->Node(this->OilCoolerInletNode).Temp - oilCoolerDeltaTemp;
1492 : }
1493 0 : if (this->AuxiliaryHeatInletNode) {
1494 0 : Real64 auxiliaryDeltaTemp = 0.0;
1495 0 : PlantUtilities::SetComponentFlowRate(
1496 0 : state, this->AuxiliaryMassFlowRate, this->AuxiliaryHeatInletNode, this->AuxiliaryHeatOutletNode, this->AHPlantLoc);
1497 :
1498 : Real64 CpAux =
1499 0 : this->AHPlantLoc.loop->glycol->getSpecificHeat(state, state.dataLoopNodes->Node(this->AuxiliaryHeatInletNode).Temp, RoutineName);
1500 :
1501 0 : if (this->AuxiliaryMassFlowRate != 0.0) {
1502 0 : auxiliaryDeltaTemp = this->QAuxiliary / (this->AuxiliaryMassFlowRate * CpAux);
1503 : } else {
1504 0 : auxiliaryDeltaTemp = 0.0;
1505 : }
1506 0 : state.dataLoopNodes->Node(this->AuxiliaryHeatOutletNode).Temp =
1507 0 : state.dataLoopNodes->Node(this->AuxiliaryHeatInletNode).Temp - auxiliaryDeltaTemp;
1508 : }
1509 : }
1510 :
1511 0 : void ASHRAE205ChillerSpecs::update(EnergyPlusData &state, Real64 const MyLoad, bool const RunFlag)
1512 : {
1513 0 : if (MyLoad >= 0.0 || !RunFlag) { // Chiller not running so pass inlet states to outlet states
1514 : // Set node temperatures
1515 0 : state.dataLoopNodes->Node(this->EvapOutletNodeNum).Temp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp;
1516 0 : state.dataLoopNodes->Node(this->CondOutletNodeNum).Temp = state.dataLoopNodes->Node(this->CondInletNodeNum).Temp;
1517 0 : if (this->OilCoolerInletNode) {
1518 0 : state.dataLoopNodes->Node(this->OilCoolerOutletNode).Temp = state.dataLoopNodes->Node(this->OilCoolerInletNode).Temp;
1519 : }
1520 0 : if (this->AuxiliaryHeatInletNode) {
1521 0 : state.dataLoopNodes->Node(this->AuxiliaryHeatOutletNode).Temp = state.dataLoopNodes->Node(this->AuxiliaryHeatInletNode).Temp;
1522 : }
1523 :
1524 0 : this->ChillerPartLoadRatio = 0.0;
1525 0 : this->ChillerCyclingRatio = 0.0;
1526 0 : this->ChillerFalseLoadRate = 0.0;
1527 0 : this->ChillerFalseLoad = 0.0;
1528 0 : this->QEvaporator = 0.0;
1529 0 : this->QCondenser = 0.0;
1530 0 : this->Energy = 0.0;
1531 0 : this->EvapEnergy = 0.0;
1532 0 : this->CondEnergy = 0.0;
1533 0 : this->QOilCooler = 0.0;
1534 0 : this->QAuxiliary = 0.0;
1535 0 : this->OilCoolerEnergy = 0.0;
1536 0 : this->AuxiliaryEnergy = 0.0;
1537 0 : this->EvapInletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp;
1538 0 : this->CondInletTemp = state.dataLoopNodes->Node(this->CondInletNodeNum).Temp;
1539 0 : this->CondOutletTemp = state.dataLoopNodes->Node(this->CondOutletNodeNum).Temp;
1540 0 : this->EvapOutletTemp = state.dataLoopNodes->Node(this->EvapOutletNodeNum).Temp;
1541 0 : this->ActualCOP = 0.0;
1542 :
1543 : } else { // Chiller is running, so pass calculated values
1544 : // Set node temperatures
1545 0 : state.dataLoopNodes->Node(this->EvapOutletNodeNum).Temp = this->EvapOutletTemp;
1546 0 : state.dataLoopNodes->Node(this->CondOutletNodeNum).Temp = this->CondOutletTemp;
1547 : // Set node flow rates; for these load based models
1548 : // assume that sufficient evaporator flow rate is available
1549 0 : this->EvapEnergy = this->QEvaporator * state.dataHVACGlobal->TimeStepSysSec;
1550 0 : this->CondEnergy = this->QCondenser * state.dataHVACGlobal->TimeStepSysSec;
1551 0 : this->OilCoolerEnergy = this->QOilCooler * state.dataHVACGlobal->TimeStepSysSec;
1552 0 : this->AuxiliaryEnergy = this->QAuxiliary * state.dataHVACGlobal->TimeStepSysSec;
1553 0 : this->EvapInletTemp = state.dataLoopNodes->Node(this->EvapInletNodeNum).Temp;
1554 0 : this->CondInletTemp = state.dataLoopNodes->Node(this->CondInletNodeNum).Temp;
1555 0 : this->CondOutletTemp = state.dataLoopNodes->Node(this->CondOutletNodeNum).Temp;
1556 0 : if (this->Power != 0.0) {
1557 0 : this->ActualCOP = this->QEvaporator / this->Power;
1558 : } else {
1559 0 : this->ActualCOP = 0.0;
1560 : }
1561 : }
1562 :
1563 : // Calculate in case of standby power
1564 0 : this->AmbientZoneGainEnergy = this->AmbientZoneGain * state.dataHVACGlobal->TimeStepSysSec;
1565 0 : this->Energy = this->Power * state.dataHVACGlobal->TimeStepSysSec;
1566 0 : }
1567 :
1568 0 : void ASHRAE205ChillerSpecs::simulate(
1569 : EnergyPlusData &state, const PlantLocation &calledFromLocation, bool FirstHVACIteration, Real64 &CurLoad, bool RunFlag)
1570 : {
1571 0 : if (calledFromLocation.loopNum == this->CWPlantLoc.loopNum) {
1572 0 : this->initialize(state, RunFlag, CurLoad);
1573 0 : this->calculate(state, CurLoad, RunFlag);
1574 0 : this->update(state, CurLoad, RunFlag);
1575 0 : } else if (calledFromLocation.loopNum == this->CDPlantLoc.loopNum) {
1576 0 : DataPlant::LoopSideLocation LoopSide = this->CDPlantLoc.loopSideNum;
1577 0 : PlantUtilities::UpdateChillerComponentCondenserSide(state,
1578 0 : calledFromLocation.loopNum,
1579 : LoopSide,
1580 : DataPlant::PlantEquipmentType::Chiller_ElectricASHRAE205,
1581 : this->CondInletNodeNum,
1582 : this->CondOutletNodeNum,
1583 : this->QCondenser,
1584 : this->CondInletTemp,
1585 : this->CondOutletTemp,
1586 : this->CondMassFlowRate,
1587 : FirstHVACIteration);
1588 : }
1589 0 : }
1590 :
1591 0 : void ASHRAE205ChillerSpecs::getDesignCapacities(
1592 : [[maybe_unused]] EnergyPlusData &state, const PlantLocation &calledFromLocation, Real64 &MaxLoad, Real64 &MinLoad, Real64 &OptLoad)
1593 : {
1594 0 : if (calledFromLocation.loopNum == this->CWPlantLoc.loopNum) {
1595 0 : MinLoad = this->Representation->performance.performance_map_cooling
1596 0 : .calculate_performance(this->EvapVolFlowRate,
1597 0 : this->TempRefEvapOut + Constant::Kelvin,
1598 : this->CondVolFlowRate,
1599 0 : this->TempRefCondIn + Constant::Kelvin,
1600 0 : this->MinSequenceNumber,
1601 : this->InterpolationType)
1602 0 : .net_evaporator_capacity;
1603 0 : MaxLoad = this->RefCap;
1604 0 : OptLoad = MaxLoad;
1605 : } else {
1606 0 : MinLoad = 0.0;
1607 0 : MaxLoad = 0.0;
1608 0 : OptLoad = 0.0;
1609 : }
1610 0 : }
1611 :
1612 : } // namespace EnergyPlus::ChillerElectricASHRAE205
|