LCOV - code coverage report
Current view: top level - EnergyPlus - HeatBalFiniteDiffManager.cc (source / functions) Coverage Total Hit
Test: lcov.output.filtered Lines: 66.6 % 1422 947
Test Date: 2025-05-22 16:09:37 Functions: 90.0 % 20 18

            Line data    Source code
       1              : // EnergyPlus, Copyright (c) 1996-2025, The Board of Trustees of the University of Illinois,
       2              : // The Regents of the University of California, through Lawrence Berkeley National Laboratory
       3              : // (subject to receipt of any required approvals from the U.S. Dept. of Energy), Oak Ridge
       4              : // National Laboratory, managed by UT-Battelle, Alliance for Sustainable Energy, LLC, and other
       5              : // contributors. All rights reserved.
       6              : //
       7              : // NOTICE: This Software was developed under funding from the U.S. Department of Energy and the
       8              : // U.S. Government consequently retains certain rights. As such, the U.S. Government has been
       9              : // granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
      10              : // worldwide license in the Software to reproduce, distribute copies to the public, prepare
      11              : // derivative works, and perform publicly and display publicly, and to permit others to do so.
      12              : //
      13              : // Redistribution and use in source and binary forms, with or without modification, are permitted
      14              : // provided that the following conditions are met:
      15              : //
      16              : // (1) Redistributions of source code must retain the above copyright notice, this list of
      17              : //     conditions and the following disclaimer.
      18              : //
      19              : // (2) Redistributions in binary form must reproduce the above copyright notice, this list of
      20              : //     conditions and the following disclaimer in the documentation and/or other materials
      21              : //     provided with the distribution.
      22              : //
      23              : // (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
      24              : //     the University of Illinois, U.S. Dept. of Energy nor the names of its contributors may be
      25              : //     used to endorse or promote products derived from this software without specific prior
      26              : //     written permission.
      27              : //
      28              : // (4) Use of EnergyPlus(TM) Name. If Licensee (i) distributes the software in stand-alone form
      29              : //     without changes from the version obtained under this License, or (ii) Licensee makes a
      30              : //     reference solely to the software portion of its product, Licensee must refer to the
      31              : //     software as "EnergyPlus version X" software, where "X" is the version number Licensee
      32              : //     obtained under this License and may not use a different name for the software. Except as
      33              : //     specifically required in this Section (4), Licensee shall not use in a company name, a
      34              : //     product name, in advertising, publicity, or other promotional activities any name, trade
      35              : //     name, trademark, logo, or other designation of "EnergyPlus", "E+", "e+" or confusingly
      36              : //     similar designation, without the U.S. Department of Energy's prior written consent.
      37              : //
      38              : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
      39              : // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
      40              : // AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
      41              : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      42              : // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
      43              : // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      44              : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
      45              : // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
      46              : // POSSIBILITY OF SUCH DAMAGE.
      47              : 
      48              : // C++ Headers
      49              : #include <cassert>
      50              : #include <cmath>
      51              : #include <string>
      52              : 
      53              : // ObjexxFCL Headers
      54              : #include <ObjexxFCL/Array.functions.hh>
      55              : #include <ObjexxFCL/Fmath.hh>
      56              : 
      57              : // EnergyPlus Headers
      58              : #include <AirflowNetwork/Solver.hpp>
      59              : #include <EnergyPlus/Construction.hh>
      60              : #include <EnergyPlus/Data/EnergyPlusData.hh>
      61              : #include <EnergyPlus/DataEnvironment.hh>
      62              : #include <EnergyPlus/DataHeatBalFanSys.hh>
      63              : #include <EnergyPlus/DataHeatBalSurface.hh>
      64              : #include <EnergyPlus/DataHeatBalance.hh>
      65              : #include <EnergyPlus/DataIPShortCuts.hh>
      66              : #include <EnergyPlus/DataMoistureBalance.hh>
      67              : #include <EnergyPlus/DataSurfaces.hh>
      68              : #include <EnergyPlus/EMSManager.hh>
      69              : #include <EnergyPlus/General.hh>
      70              : #include <EnergyPlus/HeatBalFiniteDiffManager.hh>
      71              : #include <EnergyPlus/InputProcessing/InputProcessor.hh>
      72              : #include <EnergyPlus/Material.hh>
      73              : #include <EnergyPlus/MoistureBalanceEMPDManager.hh>
      74              : #include <EnergyPlus/OutputProcessor.hh>
      75              : #include <EnergyPlus/PhaseChangeModeling/HysteresisModel.hh>
      76              : #include <EnergyPlus/PluginManager.hh>
      77              : #include <EnergyPlus/UtilityRoutines.hh>
      78              : #include <EnergyPlus/ZoneTempPredictorCorrector.hh>
      79              : 
      80              : namespace EnergyPlus {
      81              : 
      82              : namespace HeatBalFiniteDiffManager {
      83              : 
      84              :     // Module containing the heat balance simulation routines
      85              : 
      86              :     // MODULE INFORMATION:
      87              :     //       AUTHOR         Richard J. Liesen
      88              :     //       DATE WRITTEN   October 2003
      89              :     //       RE-ENGINEERED  Curtis Pedersen, 2006, Changed to Implicit FD calc for conduction.
      90              :     //                      and included enthalpy formulations for phase change materials
      91              :     // PURPOSE OF THIS MODULE:
      92              :     // To encapsulate the data and algorithms required to
      93              :     // manage the finite difference heat balance simulation on the building.
      94              : 
      95              :     // REFERENCES:
      96              :     // The MFD moisture balance method
      97              :     //  C. O. Pedersen, Enthalpy Formulation of conduction heat transfer problems
      98              :     //    involving latent heat, Simulation, Vol 18, No. 2, February 1972
      99              :     // Fan system Source/Sink heat value, and source/sink location temp from CondFD
     100              : 
     101       599172 :     void ManageHeatBalFiniteDiff(EnergyPlusData &state,
     102              :                                  int const SurfNum,
     103              :                                  Real64 &SurfTempInTmp, // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
     104              :                                  Real64 &TempSurfOutTmp // Outside Surface Temperature of each Heat Transfer Surface
     105              :     )
     106              :     {
     107              :         // SUBROUTINE INFORMATION:
     108              :         //       AUTHOR         Richard Liesen
     109              :         //       DATE WRITTEN   May 2000
     110              : 
     111              :         // PURPOSE OF THIS SUBROUTINE:
     112              :         // This subroutine manages the moisture balance method.  It is called
     113              :         // from the HeatBalanceManager at the time step level.
     114              :         // This driver manages the calls to all of
     115              :         // the other drivers and simulation algorithms.
     116              : 
     117              :         // Get the moisture balance input at the beginning of the simulation only
     118       599172 :         if (state.dataHeatBalFiniteDiffMgr->GetHBFiniteDiffInputFlag) {
     119              :             // Obtains conduction FD related parameters from input file
     120            0 :             GetCondFDInput(state);
     121            0 :             state.dataHeatBalFiniteDiffMgr->GetHBFiniteDiffInputFlag = false;
     122              :         }
     123              :         // Solve the zone heat & moisture balance using a finite difference solution
     124       599172 :         CalcHeatBalFiniteDiff(state, SurfNum, SurfTempInTmp, TempSurfOutTmp);
     125       599172 :     }
     126              : 
     127            2 :     void GetCondFDInput(EnergyPlusData &state)
     128              :     {
     129              :         // SUBROUTINE INFORMATION:
     130              :         //       AUTHOR         Curtis Pedersen
     131              :         //       DATE WRITTEN   July 2006
     132              :         //       MODIFIED       Brent Griffith Mar 2011, user settings
     133              : 
     134              :         // PURPOSE OF THIS SUBROUTINE:
     135              :         // This subroutine is the main driver for initializations for the variable property CondFD part of the
     136              :         // MFD algorithm
     137              : 
     138              :         static constexpr std::string_view routineName = "GetCondFDInput";
     139              :         // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
     140              :         int IOStat;                         // IO Status when calling get input subroutine
     141            2 :         Array1D_string MaterialNames(3);    // Number of Material Alpha names defined
     142            2 :         Array1D_string ConstructionName(3); // Name of Construction with CondFDsimplified
     143              :         int MaterialNumAlpha;               // Number of material alpha names being passed
     144              :         int MaterialNumProp;                // Number of material properties being passed
     145            2 :         Array1D<Real64> MaterialProps;      // Temporary array to transfer material properties (allocated based on user input)
     146            2 :         bool ErrorsFound(false);            // If errors detected in input
     147              :         int propNum;
     148              :         int pcMat;
     149              :         int vcMat;
     150              :         int inegptr;
     151              :         bool nonInc;
     152              : 
     153            2 :         auto &s_ip = state.dataInputProcessing->inputProcessor;
     154            2 :         auto &s_ipsc = state.dataIPShortCut;
     155            2 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
     156            2 :         auto &s_mat = state.dataMaterial;
     157              : 
     158              :         // user settings for numerical parameters
     159            2 :         s_ipsc->cCurrentModuleObject = "HeatBalanceSettings:ConductionFiniteDifference";
     160              : 
     161            2 :         if (s_ip->getNumObjectsFound(state, s_ipsc->cCurrentModuleObject) > 0) {
     162              :             int NumAlphas;
     163              :             int NumNumbers;
     164            0 :             s_ip->getObjectItem(state,
     165            0 :                                 s_ipsc->cCurrentModuleObject,
     166              :                                 1,
     167            0 :                                 s_ipsc->cAlphaArgs,
     168              :                                 NumAlphas,
     169            0 :                                 s_ipsc->rNumericArgs,
     170              :                                 NumNumbers,
     171              :                                 IOStat,
     172            0 :                                 s_ipsc->lNumericFieldBlanks,
     173            0 :                                 s_ipsc->lAlphaFieldBlanks,
     174            0 :                                 s_ipsc->cAlphaFieldNames,
     175            0 :                                 s_ipsc->cNumericFieldNames);
     176              : 
     177            0 :             if (!s_ipsc->lAlphaFieldBlanks(1)) {
     178              :                 {
     179            0 :                     s_hbfd->CondFDSchemeType =
     180            0 :                         static_cast<CondFDScheme>(getEnumValue(CondFDSchemeTypeNamesUC, Util::makeUPPER(s_ipsc->cAlphaArgs(1))));
     181            0 :                     if (s_hbfd->CondFDSchemeType == CondFDScheme::Invalid) {
     182            0 :                         ShowSevereError(state,
     183            0 :                                         format("{}: invalid {} entered={}, must match CrankNicholsonSecondOrder or FullyImplicitFirstOrder.",
     184            0 :                                                s_ipsc->cCurrentModuleObject,
     185            0 :                                                s_ipsc->cAlphaFieldNames(1),
     186            0 :                                                s_ipsc->cAlphaArgs(1)));
     187            0 :                         ErrorsFound = true;
     188              :                     }
     189              :                 }
     190              :             }
     191              : 
     192            0 :             if (!s_ipsc->lNumericFieldBlanks(1)) {
     193            0 :                 s_hbfd->SpaceDescritConstant = s_ipsc->rNumericArgs(1);
     194              :             }
     195            0 :             if (!s_ipsc->lNumericFieldBlanks(2)) {
     196            0 :                 state.dataHeatBal->CondFDRelaxFactorInput = s_ipsc->rNumericArgs(2);
     197            0 :                 state.dataHeatBal->CondFDRelaxFactor = state.dataHeatBal->CondFDRelaxFactorInput;
     198              :             }
     199            0 :             if (!s_ipsc->lNumericFieldBlanks(3)) {
     200            0 :                 state.dataHeatBal->MaxAllowedDelTempCondFD = s_ipsc->rNumericArgs(3);
     201              :             }
     202              : 
     203              :         } // settings object
     204              : 
     205            2 :         pcMat = s_ip->getNumObjectsFound(state, "MaterialProperty:PhaseChange");
     206            2 :         vcMat = s_ip->getNumObjectsFound(state, "MaterialProperty:VariableThermalConductivity");
     207              : 
     208            2 :         int numProps = setSizeMaxProperties(state);
     209            2 :         MaterialProps.allocate(numProps);
     210              : 
     211            2 :         s_hbfd->MaterialFD.allocate(s_mat->materials.size());
     212              : 
     213              :         // Load the additional CondFD Material properties
     214            2 :         s_ipsc->cCurrentModuleObject = "MaterialProperty:PhaseChange"; // Phase Change Information First
     215              : 
     216            2 :         if (pcMat != 0) { //  Get Phase Change info
     217              :             //    CondFDVariableProperties = .TRUE.
     218            0 :             for (int Loop = 1; Loop <= pcMat; ++Loop) {
     219              : 
     220              :                 // Call Input Get routine to retrieve material data
     221            0 :                 s_ip->getObjectItem(state,
     222            0 :                                     s_ipsc->cCurrentModuleObject,
     223              :                                     Loop,
     224              :                                     MaterialNames,
     225              :                                     MaterialNumAlpha,
     226              :                                     MaterialProps,
     227              :                                     MaterialNumProp,
     228              :                                     IOStat,
     229            0 :                                     s_ipsc->lNumericFieldBlanks,
     230            0 :                                     s_ipsc->lAlphaFieldBlanks,
     231            0 :                                     s_ipsc->cAlphaFieldNames,
     232            0 :                                     s_ipsc->cNumericFieldNames);
     233              : 
     234              :                 // Load the material derived type from the input data.
     235            0 :                 ErrorObjectHeader eoh{routineName, s_ipsc->cCurrentModuleObject, MaterialNames(1)};
     236            0 :                 int matNum = Material::GetMaterialNum(state, MaterialNames(1));
     237            0 :                 if (matNum == 0) {
     238            0 :                     ShowSevereItemNotFound(state, eoh, s_ipsc->cAlphaFieldNames(1), MaterialNames(1));
     239            0 :                     ErrorsFound = true;
     240            0 :                     continue;
     241              :                 }
     242            0 :                 auto const *mat = state.dataMaterial->materials(matNum);
     243              : 
     244            0 :                 if (mat->group != Material::Group::Regular) {
     245            0 :                     ShowSevereError(state,
     246            0 :                                     format("{}: Reference Material is not appropriate type for CondFD properties, material={}, must have regular "
     247              :                                            "properties (L,Cp,K,D)",
     248            0 :                                            s_ipsc->cCurrentModuleObject,
     249            0 :                                            mat->Name));
     250            0 :                     ErrorsFound = true;
     251              :                 }
     252              : 
     253              :                 // Once the material derived type number is found then load the additional CondFD variable material properties
     254              :                 //   Some or all may be zero (default).  They will be checked when calculating node temperatures
     255            0 :                 auto &matFD = s_hbfd->MaterialFD(matNum);
     256            0 :                 matFD.tk1 = MaterialProps(1);
     257            0 :                 matFD.numTempEnth = (MaterialNumProp - 1) / 2;
     258            0 :                 if (matFD.numTempEnth * 2 != (MaterialNumProp - 1)) {
     259            0 :                     ShowSevereError(state, format("GetCondFDInput: {}=\"{}\", mismatched pairs", s_ipsc->cCurrentModuleObject, MaterialNames(1)));
     260            0 :                     ShowContinueError(state, format("...expected {} pairs, but only entered {} numbers.", matFD.numTempEnth, MaterialNumProp - 1));
     261            0 :                     ErrorsFound = true;
     262              :                 }
     263            0 :                 matFD.TempEnth.dimension(2, matFD.numTempEnth, 0.0);
     264            0 :                 propNum = 2;
     265              :                 // Temperature first
     266            0 :                 for (int pcount = 1, pcount_end = matFD.numTempEnth; pcount <= pcount_end; ++pcount) {
     267            0 :                     matFD.TempEnth(1, pcount) = MaterialProps(propNum);
     268            0 :                     propNum += 2;
     269              :                 }
     270            0 :                 propNum = 3;
     271              :                 // Then Enthalpy
     272            0 :                 for (int pcount = 1, pcount_end = matFD.numTempEnth; pcount <= pcount_end; ++pcount) {
     273            0 :                     matFD.TempEnth(2, pcount) = MaterialProps(propNum);
     274            0 :                     propNum += 2;
     275              :                 }
     276            0 :                 nonInc = false;
     277            0 :                 inegptr = 0;
     278            0 :                 for (int pcount = 1, pcount_end = matFD.numTempEnth - 1; pcount <= pcount_end; ++pcount) {
     279            0 :                     if (matFD.TempEnth(1, pcount) < matFD.TempEnth(1, pcount + 1)) continue;
     280            0 :                     nonInc = true;
     281            0 :                     inegptr = pcount + 1;
     282            0 :                     break;
     283              :                 }
     284            0 :                 if (nonInc) {
     285            0 :                     ShowSevereError(state,
     286            0 :                                     format("GetCondFDInput: {}=\"{}\", non increasing Temperatures. Temperatures must be strictly increasing.",
     287            0 :                                            s_ipsc->cCurrentModuleObject,
     288              :                                            MaterialNames(1)));
     289            0 :                     ShowContinueError(state,
     290            0 :                                       format("...occurs first at item=[{}], value=[{:.2R}].", fmt::to_string(inegptr), matFD.TempEnth(1, inegptr)));
     291            0 :                     ErrorsFound = true;
     292              :                 }
     293            0 :                 nonInc = false;
     294            0 :                 inegptr = 0;
     295            0 :                 for (int pcount = 1, pcount_end = matFD.numTempEnth - 1; pcount <= pcount_end; ++pcount) {
     296            0 :                     if (matFD.TempEnth(2, pcount) <= matFD.TempEnth(2, pcount + 1)) continue;
     297            0 :                     nonInc = true;
     298            0 :                     inegptr = pcount + 1;
     299            0 :                     break;
     300              :                 }
     301            0 :                 if (nonInc) {
     302            0 :                     ShowSevereError(state,
     303            0 :                                     format("GetCondFDInput: {}=\"{}\", non increasing Enthalpy.", s_ipsc->cCurrentModuleObject, MaterialNames(1)));
     304            0 :                     ShowContinueError(state, format("...occurs first at item=[{}], value=[{:.2R}].", inegptr, matFD.TempEnth(2, inegptr)));
     305            0 :                     ShowContinueError(state, "...These values may be Cp (Specific Heat) rather than Enthalpy.  Please correct.");
     306            0 :                     ErrorsFound = true;
     307              :                 }
     308              :             }
     309              :         }
     310              :         //   Get CondFD Variable Thermal Conductivity Input
     311              : 
     312            2 :         s_ipsc->cCurrentModuleObject = "MaterialProperty:VariableThermalConductivity"; // Variable Thermal Conductivity Info next
     313            2 :         if (vcMat != 0) {                                                              //  variable k info
     314              :             //    CondFDVariableProperties = .TRUE.
     315            0 :             for (int Loop = 1; Loop <= vcMat; ++Loop) {
     316              : 
     317              :                 // Call Input Get routine to retrieve material data
     318            0 :                 s_ip->getObjectItem(state,
     319            0 :                                     s_ipsc->cCurrentModuleObject,
     320              :                                     Loop,
     321              :                                     MaterialNames,
     322              :                                     MaterialNumAlpha,
     323              :                                     MaterialProps,
     324              :                                     MaterialNumProp,
     325              :                                     IOStat,
     326            0 :                                     s_ipsc->lNumericFieldBlanks,
     327            0 :                                     s_ipsc->lAlphaFieldBlanks,
     328            0 :                                     s_ipsc->cAlphaFieldNames,
     329            0 :                                     s_ipsc->cNumericFieldNames);
     330              : 
     331            0 :                 ErrorObjectHeader eoh{routineName, s_ipsc->cCurrentModuleObject, MaterialNames(1)};
     332              :                 // Load the material derived type from the input data.
     333            0 :                 int matNum = Material::GetMaterialNum(state, MaterialNames(1));
     334            0 :                 if (matNum == 0) {
     335            0 :                     ShowSevereItemNotFound(state, eoh, s_ipsc->cAlphaFieldNames(1), MaterialNames(1));
     336            0 :                     ErrorsFound = true;
     337            0 :                     continue;
     338              :                 }
     339              : 
     340            0 :                 auto *mat = s_mat->materials(matNum);
     341              : 
     342            0 :                 if (mat->group != Material::Group::Regular) {
     343            0 :                     ShowSevereError(state,
     344            0 :                                     format("{}: Reference Material is not appropriate type for CondFD properties, material={}, must have regular "
     345              :                                            "properties (L,Cp,K,D)",
     346            0 :                                            s_ipsc->cCurrentModuleObject,
     347            0 :                                            mat->Name));
     348            0 :                     ErrorsFound = true;
     349              :                 }
     350              : 
     351              :                 // Once the material derived type number is found then load the additional CondFD variable material properties
     352              :                 //   Some or all may be zero (default).  They will be checked when calculating node temperatures
     353              : 
     354            0 :                 auto &matFD = s_hbfd->MaterialFD(matNum);
     355            0 :                 matFD.numTempCond = MaterialNumProp / 2;
     356            0 :                 if (matFD.numTempCond * 2 != MaterialNumProp) {
     357            0 :                     ShowSevereError(state, format("GetCondFDInput: {}=\"{}\", mismatched pairs", s_ipsc->cCurrentModuleObject, MaterialNames(1)));
     358            0 :                     ShowContinueError(state, format("...expected {} pairs, but only entered {} numbers.", matFD.numTempCond, MaterialNumProp));
     359            0 :                     ErrorsFound = true;
     360              :                 }
     361            0 :                 matFD.TempCond.dimension(2, matFD.numTempCond, 0.0);
     362            0 :                 propNum = 1;
     363              :                 // Temperature first
     364            0 :                 for (int pcount = 1, pcount_end = matFD.numTempCond; pcount <= pcount_end; ++pcount) {
     365            0 :                     matFD.TempCond(1, pcount) = MaterialProps(propNum);
     366            0 :                     propNum += 2;
     367              :                 }
     368            0 :                 propNum = 2;
     369              :                 // Then Conductivity
     370            0 :                 for (int pcount = 1, pcount_end = matFD.numTempCond; pcount <= pcount_end; ++pcount) {
     371            0 :                     matFD.TempCond(2, pcount) = MaterialProps(propNum);
     372            0 :                     propNum += 2;
     373              :                 }
     374            0 :                 nonInc = false;
     375            0 :                 inegptr = 0;
     376            0 :                 for (int pcount = 1, pcount_end = matFD.numTempCond - 1; pcount <= pcount_end; ++pcount) {
     377            0 :                     if (matFD.TempCond(1, pcount) < matFD.TempCond(1, pcount + 1)) continue;
     378            0 :                     nonInc = true;
     379            0 :                     inegptr = pcount + 1;
     380            0 :                     break;
     381              :                 }
     382            0 :                 if (nonInc) {
     383            0 :                     ShowSevereError(state,
     384            0 :                                     format("GetCondFDInput: {}=\"{}\", non increasing Temperatures. Temperatures must be strictly increasing.",
     385            0 :                                            s_ipsc->cCurrentModuleObject,
     386              :                                            MaterialNames(1)));
     387            0 :                     ShowContinueError(state, format("...occurs first at item=[{}], value=[{:.2R}].", inegptr, matFD.TempCond(1, inegptr)));
     388            0 :                     ErrorsFound = true;
     389              :                 }
     390              :             }
     391              :         }
     392              : 
     393           18 :         for (auto &matFD : s_hbfd->MaterialFD) {
     394           16 :             if (matFD.numTempEnth == 0) {
     395           16 :                 matFD.numTempEnth = 3;
     396           16 :                 matFD.TempEnth.dimension(2, 3, -100.0);
     397              :             }
     398           16 :             if (matFD.numTempCond == 0) {
     399           16 :                 matFD.numTempCond = 3;
     400           16 :                 matFD.TempCond.dimension(2, 3, -100.0);
     401              :             }
     402              :         }
     403              : 
     404            2 :         if (ErrorsFound) {
     405            0 :             ShowFatalError(state, "GetCondFDInput: Errors found getting ConductionFiniteDifference properties. Program terminates.");
     406              :         }
     407              : 
     408            2 :         InitialInitHeatBalFiniteDiff(state);
     409            2 :     }
     410              : 
     411            3 :     int setSizeMaxProperties(EnergyPlusData &state)
     412              :     {
     413              :         int numArgs;
     414              :         int numAlphas;
     415              :         int numNumerics;
     416            3 :         int maxTotalProps = 0;
     417              : 
     418            3 :         auto &s_ip = state.dataInputProcessing->inputProcessor;
     419              : 
     420            3 :         s_ip->getObjectDefMaxArgs(state, "MaterialProperty:PhaseChange", numArgs, numAlphas, numNumerics);
     421            3 :         maxTotalProps = max(maxTotalProps, numNumerics);
     422              : 
     423            3 :         s_ip->getObjectDefMaxArgs(state, "MaterialProperty:VariableThermalConductivity", numArgs, numAlphas, numNumerics);
     424            3 :         maxTotalProps = max(maxTotalProps, numNumerics);
     425              : 
     426            3 :         return maxTotalProps;
     427              :     }
     428              : 
     429        48972 :     void InitHeatBalFiniteDiff(EnergyPlusData &state)
     430              :     {
     431              : 
     432              :         // SUBROUTINE INFORMATION:
     433              :         //       AUTHOR         Richard J. Liesen
     434              :         //       DATE WRITTEN   Oct 2003
     435              :         //       RE-ENGINEERED  C O Pedersen 2006
     436              :         //                      B. Griffith May 2011 move begin-environment and every-timestep inits, cleanup formatting
     437              : 
     438              :         // PURPOSE OF THIS SUBROUTINE:
     439              :         // This subroutine sets the initial values for the FD moisture calculation
     440              : 
     441              :         // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
     442              :         bool ErrorsFound;
     443              : 
     444        48972 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
     445              : 
     446        48972 :         if (s_hbfd->GetHBFiniteDiffInputFlag) {
     447              :             // Obtains conduction FD related parameters from input file
     448            2 :             GetCondFDInput(state);
     449            2 :             s_hbfd->GetHBFiniteDiffInputFlag = false;
     450              :         }
     451              : 
     452        48972 :         auto &SurfaceFD = s_hbfd->SurfaceFD;
     453        48972 :         ErrorsFound = false;
     454              : 
     455              :         // now do begin environment inits.
     456        48972 :         if (state.dataGlobal->BeginEnvrnFlag && s_hbfd->MyEnvrnFlag) {
     457           56 :             for (int SurfNum = 1; SurfNum <= state.dataSurface->TotSurfaces; ++SurfNum) {
     458           48 :                 if (state.dataSurface->Surface(SurfNum).HeatTransferAlgorithm != DataSurfaces::HeatTransferModel::CondFD) continue;
     459           48 :                 if (state.dataSurface->Surface(SurfNum).Construction <= 0) continue; // Shading surface, not really a heat transfer surface
     460           48 :                 int ConstrNum = state.dataSurface->Surface(SurfNum).Construction;
     461           48 :                 if (state.dataConstruction->Construct(ConstrNum).TypeIsWindow) continue; //  Windows simulated in Window module
     462           48 :                 auto &thisSurface = SurfaceFD(SurfNum);
     463           48 :                 thisSurface.T = TempInitValue;
     464           48 :                 thisSurface.TOld = TempInitValue;
     465           48 :                 thisSurface.TT = TempInitValue;
     466           48 :                 thisSurface.Rhov = RhovInitValue;
     467           48 :                 thisSurface.RhovOld = RhovInitValue;
     468           48 :                 thisSurface.RhoT = RhovInitValue;
     469           48 :                 thisSurface.TD = TempInitValue;
     470           48 :                 thisSurface.TDT = TempInitValue;
     471           48 :                 thisSurface.TDTLast = TempInitValue;
     472           48 :                 thisSurface.TDOld = TempInitValue;
     473           48 :                 thisSurface.TDreport = TempInitValue;
     474           48 :                 thisSurface.RH = 0.0;
     475           48 :                 thisSurface.RHreport = 0.0;
     476           48 :                 thisSurface.EnthOld = EnthInitValue;
     477           48 :                 thisSurface.EnthNew = EnthInitValue;
     478           48 :                 thisSurface.EnthLast = EnthInitValue;
     479           48 :                 thisSurface.QDreport = 0.0;
     480           48 :                 thisSurface.CpDelXRhoS1 = 0.0;
     481           48 :                 thisSurface.CpDelXRhoS2 = 0.0;
     482           48 :                 thisSurface.TDpriortimestep = 0.0;
     483           48 :                 thisSurface.PhaseChangeState = Material::Phase::Transition;
     484           48 :                 thisSurface.PhaseChangeStateOld = Material::Phase::Transition;
     485           48 :                 thisSurface.PhaseChangeStateOldOld = Material::Phase::Transition;
     486           48 :                 thisSurface.PhaseChangeStateRep = Material::phaseInts[(int)Material::Phase::Transition];
     487           48 :                 thisSurface.PhaseChangeStateOldRep = Material::phaseInts[(int)Material::Phase::Transition];
     488           48 :                 thisSurface.PhaseChangeStateOldOldRep = Material::phaseInts[(int)Material::Phase::Transition];
     489           48 :                 thisSurface.PhaseChangeTemperatureReverse = 50;
     490              : 
     491           48 :                 state.dataMstBal->TempOutsideAirFD(SurfNum) = 0.0;
     492           48 :                 state.dataMstBal->RhoVaporAirOut(SurfNum) = 0.0;
     493           48 :                 state.dataMstBal->RhoVaporSurfIn(SurfNum) = 0.0;
     494           48 :                 state.dataMstBal->RhoVaporAirIn(SurfNum) = 0.0;
     495           48 :                 state.dataMstBal->HConvExtFD(SurfNum) = 0.0;
     496           48 :                 state.dataMstBal->HMassConvExtFD(SurfNum) = 0.0;
     497           48 :                 state.dataMstBal->HConvInFD(SurfNum) = 0.0;
     498           48 :                 state.dataMstBal->HMassConvInFD(SurfNum) = 0.0;
     499           48 :                 state.dataMstBal->HSkyFD(SurfNum) = 0.0;
     500           48 :                 state.dataMstBal->HGrndFD(SurfNum) = 0.0;
     501           48 :                 state.dataMstBal->HAirFD(SurfNum) = 0.0;
     502              :             }
     503            8 :             s_hbfd->WarmupSurfTemp = 0;
     504            8 :             s_hbfd->MyEnvrnFlag = false;
     505              :         }
     506        48972 :         if (!state.dataGlobal->BeginEnvrnFlag) {
     507        48964 :             s_hbfd->MyEnvrnFlag = true;
     508              :         }
     509              : 
     510              :         // now do every timestep inits
     511              : 
     512       342804 :         for (int SurfNum = 1; SurfNum <= state.dataSurface->TotSurfaces; ++SurfNum) {
     513       293832 :             if (state.dataSurface->Surface(SurfNum).HeatTransferAlgorithm != DataSurfaces::HeatTransferModel::CondFD) continue;
     514       293832 :             if (state.dataSurface->Surface(SurfNum).Construction <= 0) continue; // Shading surface, not really a heat transfer surface
     515       293832 :             int ConstrNum = state.dataSurface->Surface(SurfNum).Construction;
     516       293832 :             if (state.dataConstruction->Construct(ConstrNum).TypeIsWindow) continue; //  Windows simulated in Window module
     517       293832 :             auto &thisSurface = SurfaceFD(SurfNum);
     518       293832 :             thisSurface.T = thisSurface.TOld;
     519       293832 :             thisSurface.Rhov = thisSurface.RhovOld;
     520       293832 :             thisSurface.TD = thisSurface.TDOld;
     521       293832 :             thisSurface.TDT = thisSurface.TDreport; // PT changes from TDold to TDreport
     522       293832 :             thisSurface.TDTLast = thisSurface.TDOld;
     523       293832 :             thisSurface.EnthOld = thisSurface.EnthOld;
     524       293832 :             thisSurface.EnthNew = thisSurface.EnthOld;
     525       293832 :             thisSurface.EnthLast = thisSurface.EnthOld;
     526       293832 :             thisSurface.TDpriortimestep = thisSurface.TDreport; // Save TD for heat flux calc
     527              :         }
     528        48972 :     }
     529              : 
     530            3 :     void InitialInitHeatBalFiniteDiff(EnergyPlusData &state)
     531              :     {
     532              : 
     533              :         // SUBROUTINE INFORMATION:
     534              :         //       AUTHOR         Linda Lawrie
     535              :         //       DATE WRITTEN   March 2012
     536              : 
     537              :         // PURPOSE OF THIS SUBROUTINE:
     538              :         // This routine performs the original allocate, inits and setup output variables for the
     539              :         // module.
     540              : 
     541              :         // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
     542              :         Real64 dxn; // Intermediate calculation of nodal spacing. This is the full dx. There is
     543              :         // a half dxn thick node at each surface. dxn is the "capacitor" spacing.
     544              :         int Ipts1; // Intermediate calculation for number of full thickness nodes per layer. There
     545              :         // are always two half nodes at the layer faces.
     546              :         int Layer; // Loop counter
     547              :         int Delt;
     548              : 
     549              :         Real64 Alpha;
     550              :         Real64 mAlpha;
     551              :         Real64 StabilityTemp;
     552              :         Real64 StabilityMoist;
     553              :         Real64 kt;
     554              :         Real64 RhoS;
     555              :         Real64 Por;
     556              :         Real64 Cp;
     557              :         Real64 Dv;
     558              :         Real64 DeltaTimestep;      // zone timestep in seconds, for local check of properties
     559              :         Real64 ThicknessThreshold; // min thickness consistent with other thermal properties, for local check
     560              : 
     561            3 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
     562            3 :         auto &ConstructFD = s_hbfd->ConstructFD;
     563            3 :         auto &SigmaR = s_hbfd->SigmaR;
     564            3 :         auto &SigmaC = s_hbfd->SigmaC;
     565            3 :         auto &SurfaceFD = s_hbfd->SurfaceFD;
     566            3 :         auto &QHeatInFlux = s_hbfd->QHeatInFlux;
     567            3 :         auto &QHeatOutFlux = s_hbfd->QHeatOutFlux;
     568              : 
     569            3 :         ConstructFD.allocate(state.dataHeatBal->TotConstructs);
     570            3 :         SigmaR.allocate(state.dataHeatBal->TotConstructs);
     571            3 :         SigmaC.allocate(state.dataHeatBal->TotConstructs);
     572              : 
     573            3 :         SurfaceFD.allocate(state.dataSurface->TotSurfaces);
     574            3 :         QHeatInFlux.allocate(state.dataSurface->TotSurfaces);
     575            3 :         QHeatOutFlux.allocate(state.dataSurface->TotSurfaces);
     576              : 
     577              :         // And then initialize
     578           17 :         for (int SurfNum = 1; SurfNum <= state.dataSurface->TotSurfaces; ++SurfNum) {
     579           14 :             QHeatInFlux(SurfNum) = 0.0;
     580           14 :             QHeatOutFlux(SurfNum) = 0.0;
     581           14 :             state.dataHeatBalSurf->SurfOpaqInsFaceCondFlux(SurfNum) = 0.0;
     582           14 :             state.dataHeatBalSurf->SurfOpaqOutFaceCondFlux(SurfNum) = 0.0;
     583              :         }
     584              : 
     585              :         // Setup Output Variables
     586              : 
     587              :         //  set a Delt that fits the zone time step and keeps it below 200s.
     588              : 
     589            3 :         s_hbfd->fracTimeStepZone_Hour = 1.0 / double(state.dataGlobal->TimeStepsInHour);
     590              : 
     591            5 :         for (int index = 1; index <= 20; ++index) {
     592            5 :             Delt = (s_hbfd->fracTimeStepZone_Hour * Constant::rSecsInHour) / index; // TimeStepZone = Zone time step in fractional hours
     593            5 :             if (Delt <= 200) break;
     594              :         }
     595              : 
     596           12 :         for (int ConstrNum = 1; ConstrNum <= state.dataHeatBal->TotConstructs; ++ConstrNum) {
     597           10 :             auto const &thisConstruct = state.dataConstruction->Construct(ConstrNum);
     598           10 :             auto &thisConstructFD = ConstructFD(ConstrNum);
     599              :             // Need to skip window constructions, IRT, air wall and construction not in use.
     600              :             // Need to also skip constructions for surfaces that do not use CondFD.
     601           10 :             if (thisConstruct.TypeIsWindow) continue;
     602           10 :             if (thisConstruct.TypeIsIRT) continue;
     603           10 :             if (thisConstruct.TypeIsAirBoundary) continue;
     604           10 :             if (!thisConstruct.IsUsed) continue;
     605           10 :             if (!findAnySurfacesUsingConstructionAndCondFD(state, ConstrNum)) continue;
     606              : 
     607           10 :             thisConstructFD.Name.allocate(thisConstruct.TotLayers);
     608           10 :             thisConstructFD.Thickness.allocate(thisConstruct.TotLayers);
     609           10 :             thisConstructFD.NodeNumPoint.allocate(thisConstruct.TotLayers);
     610           10 :             thisConstructFD.DelX.allocate(thisConstruct.TotLayers);
     611           10 :             thisConstructFD.TempStability.allocate(thisConstruct.TotLayers);
     612           10 :             thisConstructFD.MoistStability.allocate(thisConstruct.TotLayers);
     613              : 
     614           10 :             int TotNodes = 0;
     615           10 :             SigmaR(ConstrNum) = 0.0;
     616           10 :             SigmaC(ConstrNum) = 0.0;
     617              : 
     618           36 :             for (Layer = 1; Layer <= thisConstruct.TotLayers; ++Layer) { // Begin layer loop ...
     619              : 
     620              :                 // Loop through all of the layers in the current construct. The purpose
     621              :                 // of this loop is to define the thermal properties and to.
     622              :                 // determine the total number of full size nodes in each layer.
     623              :                 // The number of temperature points is one more than this
     624              :                 // because of the two half nodes at the layer faces.
     625              :                 // The calculation of dxn used here is based on a standard stability
     626              :                 // criteria for explicit finite difference solutions.  This criteria
     627              :                 // was chosen not because it is viewed to be correct, but rather for
     628              :                 // lack of any better criteria at this time.  The use of a Fourier
     629              :                 // number based criteria such as this is probably physically correct.
     630              :                 //  Change to implicit formulation still uses explicit stability, but
     631              :                 // now there are special equations for R-only layers.
     632              : 
     633           27 :                 int CurrentLayer = thisConstruct.LayerPoint(Layer);
     634           27 :                 auto *mat = state.dataMaterial->materials(CurrentLayer);
     635              : 
     636           27 :                 thisConstructFD.Name(Layer) = mat->Name;
     637           27 :                 thisConstructFD.Thickness(Layer) = mat->Thickness;
     638              : 
     639              :                 // Do some quick error checks for this section.
     640              : 
     641           27 :                 if (mat->ROnly) { // Rlayer
     642              : 
     643              :                     //  These values are only needed temporarily and to calculate flux,
     644              :                     //   Layer will be handled
     645              :                     //  as a pure R in the temperature calc.
     646              :                     // assign other properties based on resistance
     647              : 
     648            3 :                     mat->SpecHeat = 0.0001;
     649            3 :                     mat->Density = 1.0;
     650            3 :                     mat->Thickness = 0.1; //  arbitrary thickness for R layer
     651            3 :                     mat->Conductivity = mat->Thickness / mat->Resistance;
     652            3 :                     kt = mat->Conductivity;
     653            3 :                     thisConstructFD.Thickness(Layer) = mat->Thickness;
     654              : 
     655            3 :                     SigmaR(ConstrNum) += mat->Resistance; // add resistance of R layer
     656            3 :                     SigmaC(ConstrNum) += 0.0;             //  no capacitance for R layer
     657              : 
     658            3 :                     Alpha = kt / (mat->Density * mat->SpecHeat);
     659              : 
     660            3 :                     mAlpha = 0.0;
     661              : 
     662           24 :                 } else if (mat->group == Material::Group::AirGap) { //  Group 1 = Air
     663              : 
     664              :                     //  Again, these values are only needed temporarily and to calculate flux,
     665              :                     //   Air layer will be handled
     666              :                     //  as a pure R in the temperature calc.
     667              :                     // assign
     668              :                     // other properties based on resistance
     669              : 
     670            0 :                     mat->SpecHeat = 0.0001;
     671            0 :                     mat->Density = 1.0;
     672            0 :                     mat->Thickness = 0.1; //  arbitrary thickness for R layer
     673            0 :                     mat->Conductivity = mat->Thickness / mat->Resistance;
     674            0 :                     kt = mat->Conductivity;
     675            0 :                     thisConstructFD.Thickness(Layer) = mat->Thickness;
     676              : 
     677            0 :                     SigmaR(ConstrNum) += mat->Resistance; // add resistance of R layer
     678            0 :                     SigmaC(ConstrNum) += 0.0;             //  no capacitance for R layer
     679              : 
     680            0 :                     Alpha = kt / (mat->Density * mat->SpecHeat);
     681            0 :                     mAlpha = 0.0;
     682           24 :                 } else if (thisConstruct.TypeIsIRT) { // make similar to air? (that didn't seem to work well)
     683            0 :                     ShowSevereError(state,
     684            0 :                                     format("InitHeatBalFiniteDiff: Construction =\"{}\" uses Material:InfraredTransparent. Cannot be used currently "
     685              :                                            "with finite difference calculations.",
     686            0 :                                            thisConstruct.Name));
     687            0 :                     if (thisConstruct.IsUsed) {
     688            0 :                         ShowContinueError(state, "...since this construction is used in a surface, the simulation is not allowed.");
     689              :                     } else {
     690            0 :                         ShowContinueError(state, "...if this construction were used in a surface, the simulation would be terminated.");
     691              :                     }
     692            0 :                     continue;
     693              :                 } else {
     694           24 :                     auto *matReg = mat;
     695           24 :                     assert(matReg != nullptr);
     696              :                     //    Regular material Properties
     697           24 :                     kt = matReg->Conductivity;
     698           24 :                     RhoS = matReg->Density;
     699           24 :                     Por = matReg->Porosity;
     700           24 :                     Cp = matReg->SpecHeat;
     701              :                     // Need Resistance for reg layer
     702           24 :                     matReg->Resistance = matReg->Thickness / matReg->Conductivity;
     703           24 :                     Dv = matReg->VaporDiffus;
     704           24 :                     SigmaR(ConstrNum) += matReg->Resistance; // add resistance
     705           24 :                     SigmaC(ConstrNum) += matReg->Density * matReg->SpecHeat * matReg->Thickness;
     706           24 :                     Alpha = kt / (RhoS * Cp);
     707           24 :                     mAlpha = 0.0;
     708              : 
     709              :                     // check for Material layers that are too thin and highly conductivity (not appropriate for surface models)
     710           24 :                     if (Alpha > DataHeatBalance::HighDiffusivityThreshold) {
     711            5 :                         DeltaTimestep = state.dataGlobal->TimeStepZoneSec;
     712            5 :                         ThicknessThreshold = std::sqrt(Alpha * DeltaTimestep * 3.0);
     713            5 :                         if (mat->Thickness < ThicknessThreshold) {
     714            2 :                             ShowSevereError(
     715              :                                 state,
     716            2 :                                 format(
     717              :                                     "InitialInitHeatBalFiniteDiff: Found Material that is too thin and/or too highly conductive, material name = {}",
     718            1 :                                     mat->Name));
     719            2 :                             ShowContinueError(state,
     720            2 :                                               format("High conductivity Material layers are not well supported by Conduction Finite Difference, "
     721              :                                                      "material conductivity = {:.3R} [W/m-K]",
     722            1 :                                                      mat->Conductivity));
     723            1 :                             ShowContinueError(state, format("Material thermal diffusivity = {:.3R} [m2/s]", Alpha));
     724            2 :                             ShowContinueError(
     725            2 :                                 state, format("Material with this thermal diffusivity should have thickness > {:.5R} [m]", ThicknessThreshold));
     726            1 :                             if (mat->Thickness < DataHeatBalance::ThinMaterialLayerThreshold) {
     727            0 :                                 ShowContinueError(state,
     728            0 :                                                   format("Material may be too thin to be modeled well, thickness = {:.5R} [m]", mat->Thickness));
     729            0 :                                 ShowContinueError(state,
     730            0 :                                                   format("Material with this thermal diffusivity should have thickness > {:.5R} [m]",
     731              :                                                          DataHeatBalance::ThinMaterialLayerThreshold));
     732              :                             }
     733            3 :                             ShowFatalError(state, "Preceding conditions cause termination.");
     734              :                         }
     735              :                     }
     736              : 
     737              :                 } //  R, Air  or regular material properties and parameters
     738              : 
     739              :                 // Proceed with setting node sizes in layers
     740              : 
     741           26 :                 dxn = std::sqrt(Alpha * Delt * s_hbfd->SpaceDescritConstant); // The Fourier number is set using user constant
     742              : 
     743              :                 // number of nodes=thickness/spacing.  This is number of full size node spaces across layer.
     744           26 :                 Ipts1 = int(mat->Thickness / dxn);
     745              :                 //  set high conductivity layers to a single full size node thickness. (two half nodes)
     746           26 :                 if (Ipts1 <= 1) Ipts1 = 1;
     747           26 :                 if (mat->ROnly || mat->group == Material::Group::AirGap) {
     748              : 
     749            3 :                     Ipts1 = 1; //  single full node in R layers- surfaces of adjacent material or inside/outside layer
     750              :                 }
     751              : 
     752           26 :                 dxn = mat->Thickness / double(Ipts1); // full node thickness
     753              : 
     754           26 :                 StabilityTemp = Alpha * Delt / pow_2(dxn);
     755           26 :                 StabilityMoist = mAlpha * Delt / pow_2(dxn);
     756           26 :                 thisConstructFD.TempStability(Layer) = StabilityTemp;
     757           26 :                 thisConstructFD.MoistStability(Layer) = StabilityMoist;
     758           26 :                 thisConstructFD.DelX(Layer) = dxn;
     759              : 
     760           26 :                 TotNodes += Ipts1;                           //  number of full size nodes
     761           26 :                 thisConstructFD.NodeNumPoint(Layer) = Ipts1; //  number of full size nodes
     762              :             }                                                //  end of layer loop.
     763              : 
     764            9 :             thisConstructFD.TotNodes = TotNodes;
     765            9 :             thisConstructFD.DeltaTime = Delt;
     766              : 
     767              :         } // End of Construction Loop.  TotNodes in each construction now set
     768              : 
     769              :         // now determine x location, or distance that nodes are from the outside face in meters
     770           10 :         for (int ConstrNum = 1; ConstrNum <= state.dataHeatBal->TotConstructs; ++ConstrNum) {
     771            8 :             auto &thisConstructFD = ConstructFD(ConstrNum);
     772            8 :             auto const &thisConstruct = state.dataConstruction->Construct(ConstrNum);
     773            8 :             if (thisConstructFD.TotNodes > 0) {
     774            8 :                 thisConstructFD.NodeXlocation.allocate(thisConstructFD.TotNodes + 1);
     775            8 :                 thisConstructFD.NodeXlocation = 0.0; // init them all
     776            8 :                 Ipts1 = 0;                           // init counter
     777           30 :                 for (Layer = 1; Layer <= thisConstruct.TotLayers; ++Layer) {
     778           22 :                     int OutwardMatLayerNum = Layer - 1;
     779           60 :                     for (int LayerNode = 1; LayerNode <= thisConstructFD.NodeNumPoint(Layer); ++LayerNode) {
     780           38 :                         ++Ipts1;
     781           38 :                         if (Ipts1 == 1) {
     782            8 :                             thisConstructFD.NodeXlocation(Ipts1) = 0.0; // first node is on outside face
     783              : 
     784           30 :                         } else if (LayerNode == 1) {
     785           14 :                             if (OutwardMatLayerNum > 0 && OutwardMatLayerNum <= thisConstruct.TotLayers) {
     786              :                                 // later nodes are Delx away from previous, but use Delx from previous layer
     787           14 :                                 thisConstructFD.NodeXlocation(Ipts1) =
     788           14 :                                     thisConstructFD.NodeXlocation(Ipts1 - 1) + thisConstructFD.DelX(OutwardMatLayerNum);
     789              :                             }
     790              :                         } else {
     791              :                             // later nodes are Delx away from previous
     792           16 :                             thisConstructFD.NodeXlocation(Ipts1) = thisConstructFD.NodeXlocation(Ipts1 - 1) + thisConstructFD.DelX(Layer);
     793              :                         }
     794              :                     }
     795              :                 }
     796            8 :                 Layer = thisConstruct.TotLayers;
     797            8 :                 ++Ipts1;
     798            8 :                 thisConstructFD.NodeXlocation(Ipts1) = thisConstructFD.NodeXlocation(Ipts1 - 1) + thisConstructFD.DelX(Layer);
     799              :             }
     800              :         }
     801              : 
     802           14 :         for (int Surf = 1; Surf <= state.dataSurface->TotSurfaces; ++Surf) {
     803           12 :             if (!state.dataSurface->Surface(Surf).HeatTransSurf) continue;
     804           12 :             if (state.dataSurface->Surface(Surf).Class == DataSurfaces::SurfaceClass::Window) continue;
     805           12 :             if (state.dataSurface->Surface(Surf).HeatTransferAlgorithm != DataSurfaces::HeatTransferModel::CondFD) continue;
     806           12 :             int ConstrNum = state.dataSurface->Surface(Surf).Construction;
     807           12 :             int TotNodes = ConstructFD(ConstrNum).TotNodes;
     808           12 :             int TotLayers = state.dataConstruction->Construct(ConstrNum).TotLayers;
     809              : 
     810              :             // Allocate the Surface Arrays
     811           12 :             SurfaceFD(Surf).T.allocate(TotNodes + 1);
     812           12 :             SurfaceFD(Surf).TOld.allocate(TotNodes + 1);
     813           12 :             SurfaceFD(Surf).TT.allocate(TotNodes + 1);
     814           12 :             SurfaceFD(Surf).Rhov.allocate(TotNodes + 1);
     815           12 :             SurfaceFD(Surf).RhovOld.allocate(TotNodes + 1);
     816           12 :             SurfaceFD(Surf).RhoT.allocate(TotNodes + 1);
     817           12 :             SurfaceFD(Surf).TD.allocate(TotNodes + 1);
     818           12 :             SurfaceFD(Surf).TDT.allocate(TotNodes + 1);
     819           12 :             SurfaceFD(Surf).TDTLast.allocate(TotNodes + 1);
     820           12 :             SurfaceFD(Surf).TDOld.allocate(TotNodes + 1);
     821           12 :             SurfaceFD(Surf).TDreport.allocate(TotNodes + 1);
     822           12 :             SurfaceFD(Surf).RH.allocate(TotNodes + 1);
     823           12 :             SurfaceFD(Surf).RHreport.allocate(TotNodes + 1);
     824           12 :             SurfaceFD(Surf).EnthOld.allocate(TotNodes + 1);
     825           12 :             SurfaceFD(Surf).EnthNew.allocate(TotNodes + 1);
     826           12 :             SurfaceFD(Surf).EnthLast.allocate(TotNodes + 1);
     827           12 :             SurfaceFD(Surf).QDreport.allocate(TotNodes + 1);
     828           12 :             SurfaceFD(Surf).CpDelXRhoS1.allocate(TotNodes + 1);
     829           12 :             SurfaceFD(Surf).CpDelXRhoS2.allocate(TotNodes + 1);
     830           12 :             SurfaceFD(Surf).TDpriortimestep.allocate(TotNodes + 1);
     831           12 :             SurfaceFD(Surf).PhaseChangeState.allocate(TotNodes + 1);
     832           12 :             SurfaceFD(Surf).PhaseChangeStateOld.allocate(TotNodes + 1);
     833           12 :             SurfaceFD(Surf).PhaseChangeStateOldOld.allocate(TotNodes + 1);
     834           12 :             SurfaceFD(Surf).PhaseChangeStateRep.allocate(TotNodes + 1);
     835           12 :             SurfaceFD(Surf).PhaseChangeStateOldRep.allocate(TotNodes + 1);
     836           12 :             SurfaceFD(Surf).PhaseChangeStateOldOldRep.allocate(TotNodes + 1);
     837           12 :             SurfaceFD(Surf).PhaseChangeTemperatureReverse.allocate(TotNodes + 1);
     838           12 :             SurfaceFD(Surf).condMaterialActuators.allocate(TotLayers);
     839           12 :             SurfaceFD(Surf).specHeatMaterialActuators.allocate(TotLayers);
     840           12 :             SurfaceFD(Surf).condNodeReport.allocate(TotNodes + 1);
     841           12 :             SurfaceFD(Surf).specHeatNodeReport.allocate(TotNodes + 1);
     842           12 :             SurfaceFD(Surf).heatSourceFluxMaterialActuators.allocate(TotLayers - 1);
     843           12 :             SurfaceFD(Surf).heatSourceInternalFluxLayerReport.allocate(TotLayers - 1);
     844           12 :             SurfaceFD(Surf).heatSourceInternalFluxEnergyLayerReport.allocate(TotLayers - 1);
     845           12 :             SurfaceFD(Surf).heatSourceEMSFluxLayerReport.allocate(TotLayers - 1);
     846           12 :             SurfaceFD(Surf).heatSourceEMSFluxEnergyLayerReport.allocate(TotLayers - 1);
     847              : 
     848              :             // Initialize the allocated arrays.
     849           12 :             SurfaceFD(Surf).T = TempInitValue;
     850           12 :             SurfaceFD(Surf).TOld = TempInitValue;
     851           12 :             SurfaceFD(Surf).TT = TempInitValue;
     852           12 :             SurfaceFD(Surf).Rhov = RhovInitValue;
     853           12 :             SurfaceFD(Surf).RhovOld = RhovInitValue;
     854           12 :             SurfaceFD(Surf).RhoT = RhovInitValue;
     855           12 :             SurfaceFD(Surf).TD = TempInitValue;
     856           12 :             SurfaceFD(Surf).TDT = TempInitValue;
     857           12 :             SurfaceFD(Surf).TDTLast = TempInitValue;
     858           12 :             SurfaceFD(Surf).TDOld = TempInitValue;
     859           12 :             SurfaceFD(Surf).TDreport = TempInitValue;
     860           12 :             SurfaceFD(Surf).RH = 0.0;
     861           12 :             SurfaceFD(Surf).RHreport = 0.0;
     862           12 :             SurfaceFD(Surf).EnthOld = EnthInitValue;
     863           12 :             SurfaceFD(Surf).EnthNew = EnthInitValue;
     864           12 :             SurfaceFD(Surf).EnthLast = EnthInitValue;
     865           12 :             SurfaceFD(Surf).QDreport = 0.0;
     866           12 :             SurfaceFD(Surf).CpDelXRhoS1 = 0.0;
     867           12 :             SurfaceFD(Surf).CpDelXRhoS2 = 0.0;
     868           12 :             SurfaceFD(Surf).TDpriortimestep = 0.0;
     869           12 :             SurfaceFD(Surf).PhaseChangeState = Material::Phase::Transition;
     870           12 :             SurfaceFD(Surf).PhaseChangeStateOld = Material::Phase::Transition;
     871           12 :             SurfaceFD(Surf).PhaseChangeStateOldOld = Material::Phase::Transition;
     872           12 :             SurfaceFD(Surf).PhaseChangeStateRep = Material::phaseInts[(int)Material::Phase::Transition];
     873           12 :             SurfaceFD(Surf).PhaseChangeStateOldRep = Material::phaseInts[(int)Material::Phase::Transition];
     874           12 :             SurfaceFD(Surf).PhaseChangeStateOldOldRep = Material::phaseInts[(int)Material::Phase::Transition];
     875           12 :             SurfaceFD(Surf).PhaseChangeTemperatureReverse = 50;
     876           12 :             SurfaceFD(Surf).condNodeReport = 0.0;
     877           12 :             SurfaceFD(Surf).specHeatNodeReport = 0.0;
     878           12 :             SurfaceFD(Surf).heatSourceInternalFluxLayerReport = 0.0;
     879           12 :             SurfaceFD(Surf).heatSourceInternalFluxEnergyLayerReport = 0.0;
     880           12 :             SurfaceFD(Surf).heatSourceEMSFluxLayerReport = 0.0;
     881           12 :             SurfaceFD(Surf).heatSourceEMSFluxEnergyLayerReport = 0.0;
     882              : 
     883              :             // Setup EMS data
     884           50 :             for (int lay = 1; lay <= TotLayers; ++lay) {
     885              :                 // Setup material layer names actuators
     886           38 :                 int matLay = state.dataConstruction->Construct(ConstrNum).LayerPoint(lay);
     887              :                 // Actuator name format: "{SurfName}:{MaterialLayerName}"
     888           38 :                 std::string actName = fmt::format("{}:{}", state.dataSurface->Surface(Surf).Name, state.dataMaterial->materials(matLay)->Name);
     889           38 :                 SurfaceFD(Surf).condMaterialActuators(lay).actuatorName = actName;
     890           38 :                 SurfaceFD(Surf).specHeatMaterialActuators(lay).actuatorName = actName;
     891              : 
     892              :                 // only setup for heat source actuator for layers 1 to N-1
     893           38 :                 if (lay != TotLayers) {
     894           26 :                     SurfaceFD(Surf).heatSourceFluxMaterialActuators(lay).actuatorName = actName;
     895              :                 }
     896           38 :             }
     897              :         }
     898              : 
     899           14 :         for (int SurfNum = 1; SurfNum <= state.dataSurface->TotSurfaces; ++SurfNum) {
     900           12 :             if (!state.dataSurface->Surface(SurfNum).HeatTransSurf) continue;
     901           12 :             if (state.dataSurface->Surface(SurfNum).Class == DataSurfaces::SurfaceClass::Window) continue;
     902           12 :             if (state.dataSurface->Surface(SurfNum).HeatTransferAlgorithm != DataSurfaces::HeatTransferModel::CondFD) continue;
     903              : 
     904           12 :             SetupOutputVariable(state,
     905              :                                 "CondFD Inner Solver Loop Iteration Count",
     906              :                                 Constant::Units::None,
     907           12 :                                 SurfaceFD(SurfNum).GSloopCounter,
     908              :                                 OutputProcessor::TimeStepType::Zone,
     909              :                                 OutputProcessor::StoreType::Sum,
     910           12 :                                 state.dataSurface->Surface(SurfNum).Name);
     911              : 
     912              :             // Setup EMS Material Actuators for Conductivity and Specific Heat
     913           12 :             int ConstrNum = state.dataSurface->Surface(SurfNum).Construction;
     914              : 
     915           12 :             auto const &thisConstruct = state.dataConstruction->Construct(ConstrNum);
     916              :             // Setup internal heat source output variables
     917              :             // Only setup for layers 1 to N-1
     918           38 :             for (int lay = 1; lay < thisConstruct.TotLayers; ++lay) {
     919           78 :                 SetupOutputVariable(state,
     920           52 :                                     format("CondFD Internal Heat Source Power After Layer {}", lay),
     921              :                                     Constant::Units::W,
     922           26 :                                     SurfaceFD(SurfNum).heatSourceInternalFluxLayerReport(lay),
     923              :                                     OutputProcessor::TimeStepType::Zone,
     924              :                                     OutputProcessor::StoreType::Average,
     925           26 :                                     state.dataSurface->Surface(SurfNum).Name);
     926           78 :                 SetupOutputVariable(state,
     927           52 :                                     format("CondFD Internal Heat Source Energy After Layer {}", lay),
     928              :                                     Constant::Units::J,
     929           26 :                                     SurfaceFD(SurfNum).heatSourceInternalFluxEnergyLayerReport(lay),
     930              :                                     OutputProcessor::TimeStepType::Zone,
     931              :                                     OutputProcessor::StoreType::Sum,
     932           26 :                                     state.dataSurface->Surface(SurfNum).Name);
     933              :             }
     934              : 
     935           12 :             if (state.dataGlobal->AnyEnergyManagementSystemInModel) {
     936           50 :                 for (int lay = 1; lay <= thisConstruct.TotLayers; ++lay) {
     937           76 :                     EnergyPlus::SetupEMSActuator(state,
     938              :                                                  "CondFD Surface Material Layer",
     939           38 :                                                  SurfaceFD(SurfNum).condMaterialActuators(lay).actuatorName,
     940              :                                                  "Thermal Conductivity",
     941              :                                                  "[W/m-K]",
     942           38 :                                                  SurfaceFD(SurfNum).condMaterialActuators(lay).isActuated,
     943           38 :                                                  SurfaceFD(SurfNum).condMaterialActuators(lay).actuatedValue);
     944           76 :                     EnergyPlus::SetupEMSActuator(state,
     945              :                                                  "CondFD Surface Material Layer",
     946           38 :                                                  SurfaceFD(SurfNum).specHeatMaterialActuators(lay).actuatorName,
     947              :                                                  "Specific Heat",
     948              :                                                  "[J/kg-C]",
     949           38 :                                                  SurfaceFD(SurfNum).specHeatMaterialActuators(lay).isActuated,
     950           38 :                                                  SurfaceFD(SurfNum).specHeatMaterialActuators(lay).actuatedValue);
     951              :                 }
     952              : 
     953              :                 // Setup EMS Actuator and Output Variables for Heat Flux
     954              :                 // Only setup for layers 1 to N-1
     955           38 :                 for (int lay = 1; lay < thisConstruct.TotLayers; ++lay) {
     956           52 :                     EnergyPlus::SetupEMSActuator(state,
     957              :                                                  "CondFD Surface Material Layer",
     958           26 :                                                  SurfaceFD(SurfNum).heatSourceFluxMaterialActuators(lay).actuatorName,
     959              :                                                  "Heat Flux",
     960              :                                                  "[W/m2]",
     961           26 :                                                  SurfaceFD(SurfNum).heatSourceFluxMaterialActuators(lay).isActuated,
     962           26 :                                                  SurfaceFD(SurfNum).heatSourceFluxMaterialActuators(lay).actuatedValue);
     963           78 :                     SetupOutputVariable(state,
     964           52 :                                         format("CondFD EMS Heat Source Power After Layer {}", lay),
     965              :                                         Constant::Units::W,
     966           26 :                                         SurfaceFD(SurfNum).heatSourceEMSFluxLayerReport(lay),
     967              :                                         OutputProcessor::TimeStepType::Zone,
     968              :                                         OutputProcessor::StoreType::Average,
     969           26 :                                         state.dataSurface->Surface(SurfNum).Name);
     970           78 :                     SetupOutputVariable(state,
     971           52 :                                         format("CondFD EMS Heat Source Energy After Layer {}", lay),
     972              :                                         Constant::Units::J,
     973           26 :                                         SurfaceFD(SurfNum).heatSourceEMSFluxEnergyLayerReport(lay),
     974              :                                         OutputProcessor::TimeStepType::Zone,
     975              :                                         OutputProcessor::StoreType::Sum,
     976           26 :                                         state.dataSurface->Surface(SurfNum).Name,
     977              :                                         Constant::eResource::Electricity,
     978              :                                         OutputProcessor::Group::Building,
     979              :                                         OutputProcessor::EndUseCat::Heating);
     980              :                 }
     981              :             }
     982              : 
     983           12 :             int TotNodes = ConstructFD(state.dataSurface->Surface(SurfNum).Construction).TotNodes; // Full size nodes, start with outside face.
     984           82 :             for (int node = 1; node <= TotNodes + 1; ++node) {                                     // include inside face node
     985          210 :                 SetupOutputVariable(state,
     986          140 :                                     format("CondFD Surface Temperature Node {}", node),
     987              :                                     Constant::Units::C,
     988           70 :                                     SurfaceFD(SurfNum).TDreport(node),
     989              :                                     OutputProcessor::TimeStepType::Zone,
     990              :                                     OutputProcessor::StoreType::Average,
     991           70 :                                     state.dataSurface->Surface(SurfNum).Name);
     992          210 :                 SetupOutputVariable(state,
     993          140 :                                     format("CondFD Surface Heat Flux Node {}", node),
     994              :                                     Constant::Units::W_m2,
     995           70 :                                     SurfaceFD(SurfNum).QDreport(node),
     996              :                                     OutputProcessor::TimeStepType::Zone,
     997              :                                     OutputProcessor::StoreType::Average,
     998           70 :                                     state.dataSurface->Surface(SurfNum).Name);
     999           70 :                 SetupOutputVariable(state,
    1000          140 :                                     format("CondFD Phase Change State {}", node),
    1001              :                                     Constant::Units::None,
    1002           70 :                                     (int &)SurfaceFD(SurfNum).PhaseChangeStateRep(node),
    1003              :                                     OutputProcessor::TimeStepType::Zone,
    1004              :                                     OutputProcessor::StoreType::Average,
    1005           70 :                                     state.dataSurface->Surface(SurfNum).Name);
    1006           70 :                 SetupOutputVariable(state,
    1007          140 :                                     format("CondFD Phase Change Previous State {}", node),
    1008              :                                     Constant::Units::None,
    1009           70 :                                     (int &)SurfaceFD(SurfNum).PhaseChangeStateOldRep(node),
    1010              :                                     OutputProcessor::TimeStepType::Zone,
    1011              :                                     OutputProcessor::StoreType::Average,
    1012           70 :                                     state.dataSurface->Surface(SurfNum).Name);
    1013          210 :                 SetupOutputVariable(state,
    1014          140 :                                     format("CondFD Phase Change Node Temperature {}", node),
    1015              :                                     Constant::Units::C,
    1016           70 :                                     SurfaceFD(SurfNum).TDT(node),
    1017              :                                     OutputProcessor::TimeStepType::Zone,
    1018              :                                     OutputProcessor::StoreType::Average,
    1019           70 :                                     state.dataSurface->Surface(SurfNum).Name);
    1020          210 :                 SetupOutputVariable(state,
    1021          140 :                                     format("CondFD Phase Change Node Conductivity {}", node),
    1022              :                                     Constant::Units::W_mK,
    1023           70 :                                     SurfaceFD(SurfNum).condNodeReport(node),
    1024              :                                     OutputProcessor::TimeStepType::Zone,
    1025              :                                     OutputProcessor::StoreType::Average,
    1026           70 :                                     state.dataSurface->Surface(SurfNum).Name);
    1027          210 :                 SetupOutputVariable(state,
    1028          140 :                                     format("CondFD Phase Change Node Specific Heat {}", node),
    1029              :                                     Constant::Units::J_kgK,
    1030           70 :                                     SurfaceFD(SurfNum).specHeatNodeReport(node),
    1031              :                                     OutputProcessor::TimeStepType::Zone,
    1032              :                                     OutputProcessor::StoreType::Average,
    1033           70 :                                     state.dataSurface->Surface(SurfNum).Name);
    1034           70 :                 if (state.dataGlobal->DisplayAdvancedReportVariables) {
    1035            0 :                     SetupOutputVariable(state,
    1036            0 :                                         format("CondFD Surface Heat Capacitance Outer Half Node {}", node),
    1037              :                                         Constant::Units::W_m2K,
    1038            0 :                                         SurfaceFD(SurfNum).CpDelXRhoS1(node),
    1039              :                                         OutputProcessor::TimeStepType::Zone,
    1040              :                                         OutputProcessor::StoreType::Average,
    1041            0 :                                         state.dataSurface->Surface(SurfNum).Name);
    1042            0 :                     SetupOutputVariable(state,
    1043            0 :                                         format("CondFD Surface Heat Capacitance Inner Half Node {}", node),
    1044              :                                         Constant::Units::W_m2K,
    1045            0 :                                         SurfaceFD(SurfNum).CpDelXRhoS2(node),
    1046              :                                         OutputProcessor::TimeStepType::Zone,
    1047              :                                         OutputProcessor::StoreType::Average,
    1048            0 :                                         state.dataSurface->Surface(SurfNum).Name);
    1049              :                 }
    1050              :             }
    1051              : 
    1052              :         } // End of the Surface Loop for Report Variable Setup
    1053              : 
    1054            2 :         ReportFiniteDiffInits(state); // Report the results from the Finite Diff Inits
    1055            2 :     }
    1056              : 
    1057           26 :     int numNodesInMaterialLayer(EnergyPlusData &state, std::string const &surfName, std::string const &matName)
    1058              :     {
    1059           26 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    1060          182 :         for (auto const &surface : state.dataSurface->Surface) {
    1061          156 :             if (surface.Name == surfName) {
    1062           26 :                 int constrNum = surface.Construction;
    1063          132 :                 for (int lay = 1; lay <= state.dataConstruction->Construct(constrNum).TotLayers; ++lay) {
    1064          106 :                     int matLay = state.dataConstruction->Construct(constrNum).LayerPoint(lay);
    1065          106 :                     if (state.dataMaterial->materials(matLay)->Name == matName) {
    1066            0 :                         return s_hbfd->ConstructFD(constrNum).NodeNumPoint(lay);
    1067              :                     }
    1068              :                 }
    1069              :             }
    1070              :         }
    1071              : 
    1072           26 :         return 0;
    1073              :     }
    1074              : 
    1075         5518 :     void relax_array(Array1D<Real64> &a,       // Array to relax
    1076              :                      Array1D<Real64> const &b, // Array to relax towards
    1077              :                      Real64 const r            // Relaxation factor [0-1]
    1078              :     )
    1079              :     {
    1080         5518 :         assert(equal_dimensions(a, b));
    1081         5518 :         assert((0.0 <= r) && (r <= 1.0));
    1082         5518 :         Real64 const q(1.0 - r);
    1083        39416 :         for (int i = a.l(), e = a.u(); i <= e; ++i) {
    1084        33898 :             a(i) = r * b(i) + q * a(i);
    1085              :         }
    1086         5518 :     }
    1087              : 
    1088       694234 :     Real64 sum_array_diff(Array1D<Real64> const &a, Array1D<Real64> const &b)
    1089              :     {
    1090       694234 :         assert(equal_dimensions(a, b));
    1091       694234 :         Real64 s(0.0);
    1092      4801564 :         for (int i = a.l(), e = a.u(); i <= e; ++i) {
    1093      4107330 :             s += a(i) - b(i); //? Should this be in abs?
    1094              :         }
    1095       694234 :         return s;
    1096              :     }
    1097              : 
    1098       599172 :     void CalcHeatBalFiniteDiff(EnergyPlusData &state,
    1099              :                                int const Surf,        // Surface number
    1100              :                                Real64 &SurfTempInTmp, // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1101              :                                Real64 &TempSurfOutTmp // Outside Surface Temperature of each Heat Transfer Surface
    1102              :     )
    1103              :     {
    1104              : 
    1105              :         // SUBROUTINE INFORMATION:
    1106              :         //       AUTHOR         Richard J. Liesen
    1107              :         //       DATE WRITTEN   Oct 2003
    1108              :         //       MODIFIED       Aug 2006 by C O Pedersen to include implicit solution and variable properties with
    1109              :         //                                material enthalpy added for Phase Change Materials.
    1110              :         //                      Sept 2010 B. Griffith, remove allocate/deallocate, use structure variables
    1111              :         //                      March 2011 P. Tabares, add relaxation factor and add surfIteration to
    1112              :         //                                 update TD and TDT, correct interzone partition
    1113              :         //                      May 2011  B. Griffith add logging and errors when inner GS loop does not converge
    1114              :         //                      November 2011 P. Tabares fixed problems with adiabatic walls/massless walls and PCM stability problems
    1115              : 
    1116              :         // PURPOSE OF THIS SUBROUTINE:
    1117              :         // this routine controls the calculation of the fluxes and temperatures using
    1118              :         //      finite difference procedures for
    1119              :         //      all building surface constructs.
    1120              : 
    1121       599172 :         int const ConstrNum = state.dataSurface->Surface(Surf).Construction;
    1122              : 
    1123       599172 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    1124       599172 :         auto &constructFD = s_hbfd->ConstructFD(ConstrNum);
    1125              : 
    1126       599172 :         int const TotNodes = constructFD.TotNodes;
    1127       599172 :         int const TotLayers = state.dataConstruction->Construct(ConstrNum).TotLayers;
    1128              : 
    1129       599172 :         SurfTempInTmp = 0.0;
    1130       599172 :         TempSurfOutTmp = 0.0;
    1131              : 
    1132       599172 :         int const Delt = constructFD.DeltaTime; //   (seconds)
    1133              : 
    1134              :         // Aliases
    1135       599172 :         auto &surfaceFD = s_hbfd->SurfaceFD(Surf);
    1136              : 
    1137       599172 :         Real64 HMovInsul = 0;
    1138       599172 :         if (state.dataSurface->AnyMovableInsulation)
    1139            0 :             HMovInsul = state.dataSurface->extMovInsuls(Surf).H; // Even if this is not a movable insulation surface?
    1140              :         // Start stepping through the slab with time.
    1141      1198344 :         for (int J = 1, J_end = nint(state.dataGlobal->TimeStepZoneSec / Delt); J <= J_end; ++J) { // PT testing higher time steps
    1142              : 
    1143              :             int GSiter;                                               // iteration counter for implicit repeat calculation
    1144      1892578 :             for (GSiter = 1; GSiter <= s_hbfd->MaxGSiter; ++GSiter) { //  Iterate implicit equations
    1145      1892578 :                 surfaceFD.TDTLast = surfaceFD.TDT;                    // Save last iteration's TDT (New temperature) values
    1146      1892578 :                 surfaceFD.EnthLast = surfaceFD.EnthNew;               // Last iterations new enthalpy value
    1147              : 
    1148              :                 // Original loop version
    1149      1892578 :                 int i(1);                                    //  Node counter
    1150      7960170 :                 for (int Lay = 1; Lay <= TotLayers; ++Lay) { // Begin layer loop ...
    1151              : 
    1152              :                     // For the exterior surface node with a convective boundary condition
    1153      6067592 :                     if ((i == 1) && (Lay == 1)) {
    1154      1892578 :                         ExteriorBCEqns(state,
    1155              :                                        Delt,
    1156              :                                        i,
    1157              :                                        Lay,
    1158              :                                        Surf,
    1159      1892578 :                                        surfaceFD.T,
    1160      1892578 :                                        surfaceFD.TT,
    1161      1892578 :                                        surfaceFD.Rhov,
    1162      1892578 :                                        surfaceFD.RhoT,
    1163      1892578 :                                        surfaceFD.RH,
    1164      1892578 :                                        surfaceFD.TD,
    1165      1892578 :                                        surfaceFD.TDT,
    1166      1892578 :                                        surfaceFD.EnthOld,
    1167      1892578 :                                        surfaceFD.EnthNew,
    1168              :                                        TotNodes,
    1169              :                                        HMovInsul);
    1170              :                     }
    1171              : 
    1172              :                     // For the Layer Interior nodes.  Arrive here after exterior surface node or interface node
    1173      6067592 :                     if (TotNodes != 1) {
    1174      8905444 :                         for (int ctr = 2, ctr_end = constructFD.NodeNumPoint(Lay); ctr <= ctr_end; ++ctr) {
    1175      3137500 :                             ++i;
    1176      3137500 :                             InteriorNodeEqns(state,
    1177              :                                              Delt,
    1178              :                                              i,
    1179              :                                              Lay,
    1180              :                                              Surf,
    1181      3137500 :                                              surfaceFD.T,
    1182      3137500 :                                              surfaceFD.TT,
    1183      3137500 :                                              surfaceFD.Rhov,
    1184      3137500 :                                              surfaceFD.RhoT,
    1185      3137500 :                                              surfaceFD.RH,
    1186      3137500 :                                              surfaceFD.TD,
    1187      3137500 :                                              surfaceFD.TDT,
    1188      3137500 :                                              surfaceFD.EnthOld,
    1189      3137500 :                                              surfaceFD.EnthNew);
    1190              :                         }
    1191              :                     }
    1192              : 
    1193      6067592 :                     if ((Lay < TotLayers) && (TotNodes != 1)) { // Interface equations for 2 capacitive materials
    1194      4175014 :                         ++i;
    1195      4175014 :                         IntInterfaceNodeEqns(state,
    1196              :                                              Delt,
    1197              :                                              i,
    1198              :                                              Lay,
    1199              :                                              Surf,
    1200      4175014 :                                              surfaceFD.T,
    1201      4175014 :                                              surfaceFD.TT,
    1202      4175014 :                                              surfaceFD.Rhov,
    1203      4175014 :                                              surfaceFD.RhoT,
    1204      4175014 :                                              surfaceFD.RH,
    1205      4175014 :                                              surfaceFD.TD,
    1206      4175014 :                                              surfaceFD.TDT,
    1207      4175014 :                                              surfaceFD.EnthOld,
    1208      4175014 :                                              surfaceFD.EnthNew,
    1209              :                                              GSiter);
    1210      1892578 :                     } else if (Lay == TotLayers) { // For the Interior surface node with a convective boundary condition
    1211      1892578 :                         ++i;
    1212      1892578 :                         InteriorBCEqns(state,
    1213              :                                        Delt,
    1214              :                                        i,
    1215              :                                        Lay,
    1216              :                                        Surf,
    1217      1892578 :                                        surfaceFD.T,
    1218      1892578 :                                        surfaceFD.TT,
    1219      1892578 :                                        surfaceFD.Rhov,
    1220      1892578 :                                        surfaceFD.RhoT,
    1221      1892578 :                                        surfaceFD.RH,
    1222      1892578 :                                        surfaceFD.TD,
    1223      1892578 :                                        surfaceFD.TDT,
    1224      1892578 :                                        surfaceFD.EnthOld,
    1225      1892578 :                                        surfaceFD.EnthNew,
    1226      1892578 :                                        surfaceFD.TDreport);
    1227              :                     }
    1228              : 
    1229              :                 } // layer loop
    1230              : 
    1231              :                 // Apply Relaxation factor for stability, use current (TDT) and previous (TDTLast) iteration temperature values
    1232              :                 // to obtain the actual temperature that is going to be used for next iteration. This would mostly happen with PCM
    1233              :                 // Tuned Function call to eliminate array temporaries and multiple relaxation passes
    1234      1892578 :                 if (GSiter > 15) {
    1235            0 :                     relax_array(surfaceFD.TDT, surfaceFD.TDTLast, 0.9875);
    1236      1892578 :                 } else if (GSiter > 10) {
    1237           14 :                     relax_array(surfaceFD.TDT, surfaceFD.TDTLast, 0.875);
    1238      1892564 :                 } else if (GSiter > 5) {
    1239         2516 :                     relax_array(surfaceFD.TDT, surfaceFD.TDTLast, 0.5);
    1240              :                 }
    1241              : 
    1242              :                 // the following could blow up when all the node temps sum to less than 1.0.  seems poorly formulated for temperature in C.
    1243              :                 // PT delete one zero and decrease number of minimum iterations, from 3 (which actually requires 4 iterations) to 2.
    1244              : 
    1245      1892578 :                 if ((GSiter > 2) && (std::abs(sum_array_diff(surfaceFD.TDT, surfaceFD.TDTLast) / sum(surfaceFD.TDT)) < 0.00001)) break;
    1246              : 
    1247              :             } // End of Gauss Seidell iteration loop
    1248              : 
    1249       599172 :             surfaceFD.GSloopCounter = GSiter; // outputs GSloop iterations, useful for pinpointing stability issues with condFD
    1250       599172 :             if (state.dataHeatBal->CondFDRelaxFactor != 1.0) {
    1251              :                 // Apply Relaxation factor for stability, use current (TDT) and previous (TDreport) temperature values
    1252              :                 //   to obtain the actual temperature that is going to be exported/use
    1253         2988 :                 relax_array(surfaceFD.TDT, surfaceFD.TDreport, 1.0 - state.dataHeatBal->CondFDRelaxFactor);
    1254         2988 :                 surfaceFD.EnthOld = surfaceFD.EnthNew;
    1255              :             }
    1256              : 
    1257      4094342 :             for (int I = 1; I <= (TotNodes + 1); I++) {
    1258              :                 // When the phase change process reverses its direction while melting or freezing (without completing its phase
    1259              :                 // to either liquid or solid), the temperature at which it changes its direction is saved
    1260              :                 // in the variable PhaseChangeTemperatureReverse, and this variable will hold the value of the temperature until
    1261              :                 // the next reverse in the process takes place.
    1262      3495170 :                 if (((surfaceFD.PhaseChangeStateOld(I) == Material::Phase::Freezing &&
    1263            0 :                       surfaceFD.PhaseChangeState(I) == Material::Phase::Transition) ||
    1264      3495170 :                      (surfaceFD.PhaseChangeStateOld(I) == Material::Phase::Transition &&
    1265     10485510 :                       surfaceFD.PhaseChangeState(I) == Material::Phase::Freezing)) ||
    1266      3495170 :                     ((surfaceFD.PhaseChangeStateOld(I) == Material::Phase::Melting && surfaceFD.PhaseChangeState(I) == Material::Phase::Transition) ||
    1267      3495170 :                      (surfaceFD.PhaseChangeStateOld(I) == Material::Phase::Transition &&
    1268      3495170 :                       surfaceFD.PhaseChangeState(I) == Material::Phase::Melting))) {
    1269            0 :                     surfaceFD.PhaseChangeTemperatureReverse(I) = surfaceFD.TDT(I);
    1270              :                 }
    1271              :             }
    1272              : 
    1273       599172 :             surfaceFD.PhaseChangeStateOldOld = surfaceFD.PhaseChangeStateOld;
    1274       599172 :             surfaceFD.PhaseChangeStateOld = surfaceFD.PhaseChangeState;
    1275              : 
    1276       599172 :             surfaceFD.PhaseChangeStateOldOldRep = surfaceFD.PhaseChangeStateOldRep;
    1277       599172 :             surfaceFD.PhaseChangeStateOldRep = surfaceFD.PhaseChangeStateRep;
    1278              :         } // Time Loop  //PT solving time steps
    1279              : 
    1280       599172 :         TempSurfOutTmp = surfaceFD.TDT(1);
    1281       599172 :         SurfTempInTmp = surfaceFD.TDT(TotNodes + 1);
    1282       599172 :         state.dataMstBal->RhoVaporSurfIn(Surf) = 0.0;
    1283              : 
    1284              :         // For ground surfaces or when raining, outside face inner half-node heat capacity was unknown and set to -1 in ExteriorBCEqns
    1285              :         // Now check for the flag and set equal to the second node's outer half-node heat capacity if needed
    1286       599172 :         if (surfaceFD.CpDelXRhoS2(1) == -1.0) {
    1287            0 :             surfaceFD.CpDelXRhoS2(1) = surfaceFD.CpDelXRhoS1(2); // Set to node 2's outer half node heat capacity
    1288              :         }
    1289       599172 :         CalcNodeHeatFlux(state, Surf, TotNodes);
    1290              : 
    1291              :         // Determine largest change in node temps
    1292       599172 :         Real64 MaxDelTemp = 0.0;
    1293      4094342 :         for (int NodeNum = 1; NodeNum <= TotNodes + 1; ++NodeNum) { // need to consider all nodes
    1294      3495170 :             MaxDelTemp = max(std::abs(surfaceFD.TDT(NodeNum) - surfaceFD.TDreport(NodeNum)), MaxDelTemp);
    1295              :         }
    1296       599172 :         surfaceFD.MaxNodeDelTemp = MaxDelTemp;
    1297       599172 :         surfaceFD.TDreport = surfaceFD.TDT;
    1298       599172 :         surfaceFD.EnthOld = surfaceFD.EnthNew;
    1299       599172 :     }
    1300              : 
    1301            2 :     void ReportFiniteDiffInits(EnergyPlusData &state)
    1302              :     {
    1303              : 
    1304              :         // SUBROUTINE INFORMATION:
    1305              :         //       AUTHOR         Richard Liesen
    1306              :         //       DATE WRITTEN   November 2003
    1307              :         //       MODIFIED       B. Griffith, May 2011 add reporting of node x locations
    1308              : 
    1309              :         // PURPOSE OF THIS SUBROUTINE:
    1310              :         // This routine gives a detailed report to the user about
    1311              :         // the initializations for the Finite Difference calculations
    1312              :         // of each construction.
    1313              : 
    1314              :         // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
    1315              :         bool DoReport;
    1316              : 
    1317            2 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    1318              : 
    1319              :         // Formats
    1320              :         static constexpr std::string_view Format_702(" ConductionFiniteDifference Node,{},{:.8R},{},{},{}\n");
    1321              : 
    1322            2 :         print(state.files.eio,
    1323              :               "! <ConductionFiniteDifference HeatBalanceSettings>,Scheme Type,Space Discretization Constant,Relaxation Factor,Inside Face Surface "
    1324              :               "Temperature Convergence Criteria\n");
    1325            2 :         print(state.files.eio,
    1326              :               " ConductionFiniteDifference HeatBalanceSettings,{},{:.2R},{:.2R},{:.4R}\n",
    1327            2 :               CondFDSchemeTypeNamesCC[static_cast<int>(s_hbfd->CondFDSchemeType)],
    1328            2 :               s_hbfd->SpaceDescritConstant,
    1329            2 :               state.dataHeatBal->CondFDRelaxFactorInput,
    1330            2 :               state.dataHeatBal->MaxAllowedDelTempCondFD);
    1331              : 
    1332            6 :         General::ScanForReports(state, "Constructions", DoReport, "Constructions");
    1333              : 
    1334            2 :         if (DoReport) {
    1335              : 
    1336              :             //                                      Write Descriptions
    1337            2 :             print(state.files.eio, "{}\n", "! <Construction CondFD>,Construction Name,Index,#Layers,#Nodes,Time Step {hours}");
    1338            2 :             print(state.files.eio,
    1339              :                   "{}\n",
    1340              :                   "! <Material CondFD Summary>,Material Name,Thickness {m},#Layer Elements,Layer Delta X,Layer Alpha*Delt/Delx**2,Layer Moisture "
    1341              :                   "Stability");
    1342              : 
    1343              :             // HT Algo issue
    1344            2 :             if (state.dataHeatBal->AnyCondFD) {
    1345            2 :                 print(state.files.eio,
    1346              :                       "{}\n",
    1347              :                       "! <ConductionFiniteDifference Node>,Node Identifier, Node Distance From Outside Face {m}, Construction Name, Outward Material "
    1348              :                       "Name (or Face), Inward Material Name (or Face)");
    1349              :             }
    1350              : 
    1351           10 :             for (int ThisNum = 1; ThisNum <= state.dataHeatBal->TotConstructs; ++ThisNum) {
    1352            8 :                 auto &construct = state.dataConstruction->Construct(ThisNum);
    1353              : 
    1354            8 :                 if (construct.TypeIsWindow) continue;
    1355            8 :                 if (construct.TypeIsIRT) continue;
    1356            8 :                 if (construct.TypeIsAirBoundary) continue;
    1357            8 :                 if (!construct.IsUsed) continue;
    1358            8 :                 if (!findAnySurfacesUsingConstructionAndCondFD(state, ThisNum)) continue;
    1359              : 
    1360            8 :                 auto &constructFD = s_hbfd->ConstructFD(ThisNum);
    1361              :                 static constexpr std::string_view Format_700(" Construction CondFD,{},{},{},{},{:.6R}\n");
    1362            8 :                 print(state.files.eio,
    1363              :                       Format_700,
    1364            8 :                       construct.Name,
    1365              :                       ThisNum,
    1366            8 :                       construct.TotLayers,
    1367            0 :                       int(constructFD.TotNodes + 1),
    1368            8 :                       constructFD.DeltaTime / Constant::rSecsInHour);
    1369              : 
    1370           30 :                 for (int Layer = 1; Layer <= construct.TotLayers; ++Layer) {
    1371              :                     static constexpr std::string_view Format_701(" Material CondFD Summary,{},{:.4R},{},{:.8R},{:.8R},{:.8R}\n");
    1372           22 :                     print(state.files.eio,
    1373              :                           Format_701,
    1374              :                           constructFD.Name(Layer),
    1375              :                           constructFD.Thickness(Layer),
    1376              :                           constructFD.NodeNumPoint(Layer),
    1377              :                           constructFD.DelX(Layer),
    1378              :                           constructFD.TempStability(Layer),
    1379              :                           constructFD.MoistStability(Layer));
    1380              :                 }
    1381              : 
    1382              :                 // now list each CondFD Node with its X distance from outside face in m along with other identifiers
    1383            8 :                 int Inodes = 0;
    1384              : 
    1385           30 :                 for (int Layer = 1; Layer <= construct.TotLayers; ++Layer) {
    1386           22 :                     int OutwardMatLayerNum = Layer - 1;
    1387           60 :                     for (int LayerNode = 1; LayerNode <= constructFD.NodeNumPoint(Layer); ++LayerNode) {
    1388           38 :                         ++Inodes;
    1389           38 :                         if (Inodes == 1) {
    1390           16 :                             print(state.files.eio,
    1391              :                                   Format_702,
    1392           16 :                                   format("Node #{}", Inodes),
    1393              :                                   constructFD.NodeXlocation(Inodes),
    1394            8 :                                   construct.Name,
    1395              :                                   "Surface Outside Face",
    1396              :                                   constructFD.Name(Layer));
    1397              : 
    1398           30 :                         } else if (LayerNode == 1) {
    1399              : 
    1400           14 :                             if (OutwardMatLayerNum > 0 && OutwardMatLayerNum <= construct.TotLayers) {
    1401           28 :                                 print(state.files.eio,
    1402              :                                       Format_702,
    1403           28 :                                       format("Node #{}", Inodes),
    1404              :                                       constructFD.NodeXlocation(Inodes),
    1405           14 :                                       construct.Name,
    1406              :                                       constructFD.Name(OutwardMatLayerNum),
    1407              :                                       constructFD.Name(Layer));
    1408              :                             }
    1409           16 :                         } else if (LayerNode > 1) {
    1410           16 :                             OutwardMatLayerNum = Layer;
    1411           32 :                             print(state.files.eio,
    1412              :                                   Format_702,
    1413           32 :                                   format("Node #{}", Inodes),
    1414              :                                   constructFD.NodeXlocation(Inodes),
    1415           16 :                                   construct.Name,
    1416              :                                   constructFD.Name(OutwardMatLayerNum),
    1417              :                                   constructFD.Name(Layer));
    1418              :                         }
    1419              :                     }
    1420              :                 }
    1421              : 
    1422            8 :                 int Layer = construct.TotLayers;
    1423            8 :                 ++Inodes;
    1424           16 :                 print(state.files.eio,
    1425              :                       Format_702,
    1426           16 :                       format("Node #{}", Inodes),
    1427              :                       constructFD.NodeXlocation(Inodes),
    1428            8 :                       construct.Name,
    1429              :                       constructFD.Name(Layer),
    1430              :                       "Surface Inside Face");
    1431              :             }
    1432              :         }
    1433            2 :     }
    1434              : 
    1435            0 :     Real64 terpld(Array2<Real64> const &a, Real64 const x1, int const nind, int const ndep)
    1436              :     {
    1437              :         // author:c. o. pedersen
    1438              :         // purpose:
    1439              :         //   this function performs a linear interpolation
    1440              :         //     on a two dimensional array containing both
    1441              :         //     dependent and independent variables.
    1442              : 
    1443              :         // inputs:
    1444              :         //  a = two dimensional array
    1445              :         //  nind=row containing independent variable
    1446              :         //  ndep=row containing the dependent variable
    1447              :         //   x1 = specific independent variable value for which
    1448              :         //      interpolated output is wanted
    1449              :         // outputs:
    1450              :         //    the value of dependent variable corresponding
    1451              :         //       to x1
    1452              :         //    routine returns first or last dependent variable
    1453              :         //      for out of range x1.
    1454              : 
    1455            0 :         int const first(a.l2());
    1456              : 
    1457            0 :         assert(a.size() > 0u);
    1458            0 :         Array2<Real64>::size_type l(1);
    1459            0 :         Real64 r(a[0]);
    1460            0 :         int last(first);
    1461            0 :         for (int i1 = first + 1, e1 = a.u2(); i1 <= e1; ++i1, ++l) {
    1462            0 :             if (a[l] > r) {
    1463            0 :                 r = a[l];
    1464            0 :                 last = i1;
    1465              :             }
    1466              :         }
    1467              : 
    1468            0 :         Array2<Real64>::size_type lind(a.index(nind, 0));
    1469            0 :         Array2<Real64>::size_type ldep(a.index(ndep, 0));
    1470            0 :         if ((a.size2() == 1u) || (x1 <= a[lind + first])) { // [ lind + first ] == ( nind, first )
    1471            0 :             return a[ldep + first];                         // [ ldep + first ] == ( ndep, first )
    1472            0 :         } else if (x1 >= a[lind + last]) {                  // [ lind + last ] == ( nind, last )
    1473            0 :             return a[ldep + last];                          // [ ldep + last ] == ( ndep, last )
    1474              :         } else {
    1475              :             int i;
    1476            0 :             int i1(first);
    1477            0 :             int i2(last);
    1478            0 :             while ((i2 - i1) > 1) {
    1479            0 :                 i = i1 + ((i2 - i1) >> 1); // Tuned bit shift replaces / 2
    1480            0 :                 if (x1 < a[lind + i]) {    // [ lind + i ] == ( nind, i )
    1481            0 :                     i2 = i;
    1482              :                 } else {
    1483            0 :                     i1 = i;
    1484              :                 }
    1485              :             }
    1486            0 :             i = i2;
    1487            0 :             lind += i;
    1488            0 :             ldep += i;
    1489            0 :             Real64 const fract((x1 - a[lind - 1]) / (a[lind] - a[lind - 1])); // [ lind ] == ( nind, i ), [ lind - 1 ] == ( nind, i - 1 )
    1490            0 :             return a[ldep - 1] + fract * (a[ldep] - a[ldep - 1]);             // [ ldep ] == ( ndep, i ), [ ldep - 1 ] == ( ndep, i - 1 )
    1491              :         }
    1492              :     }
    1493              : 
    1494      1892578 :     void ExteriorBCEqns(EnergyPlusData &state,
    1495              :                         int const Delt,                               // Time Increment
    1496              :                         int const i,                                  // Node Index
    1497              :                         int const Lay,                                // Layer Number for Construction
    1498              :                         int const Surf,                               // Surface number
    1499              :                         [[maybe_unused]] Array1D<Real64> const &T,    // Old node Temperature in MFD finite difference solution
    1500              :                         Array1D<Real64> &TT,                          // New node Temperature in MFD finite difference solution.
    1501              :                         [[maybe_unused]] Array1D<Real64> const &Rhov, // MFD Nodal Vapor Density[kg/m3] and is the old or last time step result.
    1502              :                         Array1D<Real64> &RhoT,                        // MFD vapor density for the new time step.
    1503              :                         [[maybe_unused]] Array1D<Real64> &RH,         // Nodal relative humidity
    1504              :                         Array1D<Real64> const &TD,                    // The old dry Temperature at each node for the CondFD algorithm..
    1505              :                         Array1D<Real64> &TDT,     // The current or new Temperature at each node location for the CondFD solution..
    1506              :                         Array1D<Real64> &EnthOld, // Old Nodal enthalpy
    1507              :                         Array1D<Real64> &EnthNew, // New Nodal enthalpy
    1508              :                         int const TotNodes,       // Total nodes in layer
    1509              :                         Real64 const HMovInsul    // Conductance of movable(transparent) insulation.
    1510              :     )
    1511              :     {
    1512              : 
    1513              :         // SUBROUTINE INFORMATION:
    1514              :         //       AUTHOR         Richard Liesen
    1515              :         //       DATE WRITTEN   November, 2003
    1516              :         //       MODIFIED       B. Griffith 2010, fix adiabatic and other side surfaces
    1517              :         //                      May 2011, B. Griffith, P. Tabares
    1518              :         //                      November 2011 P. Tabares fixed problems with adiabatic walls/massless walls
    1519              :         //                      November 2011 P. Tabares fixed problems PCM stability problems
    1520              :         //       RE-ENGINEERED  Curtis Pedersen 2006
    1521              : 
    1522      1892578 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    1523      1892578 :         auto const &surface(state.dataSurface->Surface(Surf));
    1524      1892578 :         int const surface_ExtBoundCond(surface.ExtBoundCond);
    1525              : 
    1526              :         Real64 Tsky;
    1527              :         Real64 QRadSWOutFD;             // Short wave radiation absorbed on outside of opaque surface
    1528      1892578 :         Real64 QRadSWOutMvInsulFD(0.0); // SW radiation at outside of Movable Insulation
    1529      1892578 :         if (surface_ExtBoundCond == DataSurfaces::OtherSideCondModeledExt) {
    1530              :             // CR8046 switch modeled rad temp for sky temp.
    1531            0 :             Tsky = state.dataSurface->OSCM(surface.OSCMPtr).TRad;
    1532            0 :             QRadSWOutFD = 0.0; // eliminate incident shortwave on underlying surface
    1533              :         } else {               // Set the external conditions to local variables
    1534      1892578 :             QRadSWOutFD = state.dataHeatBalSurf->SurfOpaqQRadSWOutAbs(Surf);
    1535      1892578 :             QRadSWOutMvInsulFD = state.dataHeatBalSurf->SurfQRadSWOutMvIns(Surf);
    1536      1892578 :             Tsky = state.dataEnvrn->SkyTemp;
    1537              :         }
    1538              : 
    1539      1892578 :         if (surface_ExtBoundCond == DataSurfaces::Ground || state.dataEnvrn->IsRain) {
    1540            0 :             TDT(i) = TT(i) = state.dataMstBal->TempOutsideAirFD(Surf);
    1541            0 :             RhoT(i) = state.dataMstBal->RhoVaporAirOut(Surf);
    1542            0 :             s_hbfd->SurfaceFD(Surf).CpDelXRhoS1(i) = 0.0;  // Outside face  does not have an outer half node
    1543            0 :             s_hbfd->SurfaceFD(Surf).CpDelXRhoS2(i) = -1.0; // Set this to -1 as a flag, then set to node 2's outer half node heat capacity
    1544      1892578 :         } else if (surface_ExtBoundCond > 0) {
    1545              :             // this is actually the inside face of another surface, or maybe this same surface if adiabatic
    1546              :             // switch around arguments for the other surf and call routines as for interior side BC from opposite face
    1547              : 
    1548       308914 :             int const ext_bound_construction(state.dataSurface->Surface(surface_ExtBoundCond).Construction);
    1549       308914 :             int const LayIn(state.dataConstruction->Construct(ext_bound_construction).TotLayers); // layer number for call to interior eqs
    1550       308914 :             int const NodeIn(s_hbfd->ConstructFD(ext_bound_construction).TotNodes + 1);           // node number "I" for call to interior eqs
    1551       308914 :             int const TotNodesPlusOne(TotNodes + 1);
    1552       308914 :             if (surface_ExtBoundCond == Surf) { // adiabatic surface, PT added since it is not the same as interzone wall
    1553              :                 // as Outside Boundary Condition Object can be left blank.
    1554              : 
    1555       308914 :                 auto &surfaceFD = s_hbfd->SurfaceFD(Surf);
    1556       308914 :                 InteriorBCEqns(state,
    1557              :                                Delt,
    1558              :                                NodeIn,
    1559              :                                LayIn,
    1560              :                                Surf,
    1561       308914 :                                surfaceFD.T,
    1562       308914 :                                surfaceFD.TT,
    1563       308914 :                                surfaceFD.Rhov,
    1564       308914 :                                surfaceFD.RhoT,
    1565       308914 :                                surfaceFD.RH,
    1566       308914 :                                surfaceFD.TD,
    1567       308914 :                                surfaceFD.TDT,
    1568       308914 :                                surfaceFD.EnthOld,
    1569       308914 :                                surfaceFD.EnthNew,
    1570       308914 :                                surfaceFD.TDreport);
    1571       308914 :                 TDT(i) = surfaceFD.TDT(TotNodesPlusOne);
    1572       308914 :                 TT(i) = surfaceFD.TT(TotNodesPlusOne);
    1573       308914 :                 RhoT(i) = surfaceFD.RhoT(TotNodesPlusOne);
    1574              : 
    1575       308914 :                 surfaceFD.CpDelXRhoS1(i) = 0.0;                                    // Outside face  does not have an outer half node
    1576       308914 :                 surfaceFD.CpDelXRhoS2(i) = surfaceFD.CpDelXRhoS1(TotNodesPlusOne); // Save this for computing node flux values
    1577              : 
    1578              :             } else {
    1579              : 
    1580              :                 // potential-lkl-from old      CALL InteriorBCEqns(Delt,nodeIn,LayIn,Surf,SurfaceFD(Surface(Surf)%ExtBoundCond)%T, &
    1581            0 :                 auto &surfaceFDEBC = s_hbfd->SurfaceFD(surface_ExtBoundCond);
    1582            0 :                 InteriorBCEqns(state,
    1583              :                                Delt,
    1584              :                                NodeIn,
    1585              :                                LayIn,
    1586              :                                surface_ExtBoundCond,
    1587            0 :                                surfaceFDEBC.T,
    1588            0 :                                surfaceFDEBC.TT,
    1589            0 :                                surfaceFDEBC.Rhov,
    1590            0 :                                surfaceFDEBC.RhoT,
    1591            0 :                                surfaceFDEBC.RH,
    1592            0 :                                surfaceFDEBC.TD,
    1593            0 :                                surfaceFDEBC.TDT,
    1594            0 :                                surfaceFDEBC.EnthOld,
    1595            0 :                                surfaceFDEBC.EnthNew,
    1596            0 :                                surfaceFDEBC.TDreport);
    1597              : 
    1598            0 :                 TDT(i) = surfaceFDEBC.TDT(TotNodesPlusOne);
    1599            0 :                 TT(i) = surfaceFDEBC.TT(TotNodesPlusOne);
    1600            0 :                 RhoT(i) = surfaceFDEBC.RhoT(TotNodesPlusOne);
    1601              : 
    1602            0 :                 s_hbfd->SurfaceFD(Surf).CpDelXRhoS1(i) = 0.0;                                       // Outside face  does not have an outer half node
    1603            0 :                 s_hbfd->SurfaceFD(Surf).CpDelXRhoS2(i) = surfaceFDEBC.CpDelXRhoS1(TotNodesPlusOne); // Save this for computing node flux values
    1604              :             }
    1605              : 
    1606       308914 :             Real64 const QNetSurfFromOutside(state.dataHeatBalSurf->SurfOpaqInsFaceCondFlux(surface_ExtBoundCond)); // filled in InteriorBCEqns
    1607              :             //    QFluxOutsideToOutSurf(Surf)       = QnetSurfFromOutside
    1608       308914 :             state.dataHeatBalSurf->SurfOpaqOutFaceCondFlux(Surf) = -QNetSurfFromOutside;
    1609       308914 :             s_hbfd->QHeatOutFlux(Surf) = QNetSurfFromOutside;
    1610              : 
    1611              :         } else { // regular outside conditions
    1612      1583664 :             Real64 TDT_i(TDT(i));
    1613      1583664 :             Real64 const TDT_p(TDT(i + 1));
    1614              : 
    1615      1583664 :             Real64 Tgndsurface = 0.0;
    1616      1583664 :             if (state.dataSurface->Surface(Surf).UseSurfPropertyGndSurfTemp) {
    1617            0 :                 Tgndsurface = state.dataSurface->GroundSurfsProperty(Surf).SurfsTempAvg;
    1618              :             } else {
    1619      1583664 :                 Tgndsurface = state.dataMstBal->TempOutsideAirFD(Surf);
    1620              :             }
    1621              : 
    1622              :             // Boundary Conditions from Simulation for Exterior
    1623      1583664 :             Real64 const hconvo(state.dataMstBal->HConvExtFD(Surf));
    1624              : 
    1625      1583664 :             Real64 const hrad(state.dataMstBal->HAirFD(Surf));
    1626      1583664 :             Real64 const hsky(state.dataMstBal->HSkyFD(Surf));
    1627      1583664 :             Real64 const hgnd(state.dataMstBal->HGrndFD(Surf));
    1628      1583664 :             Real64 const Toa(state.dataMstBal->TempOutsideAirFD(Surf));
    1629      1583664 :             Real64 const Tgnd(Tgndsurface);
    1630              : 
    1631      1583664 :             if (surface.HeatTransferAlgorithm == DataSurfaces::HeatTransferModel::CondFD) {
    1632              : 
    1633      1583664 :                 int const ConstrNum(surface.Construction);
    1634      1583664 :                 int const MatLay(state.dataConstruction->Construct(ConstrNum).LayerPoint(Lay));
    1635      1583664 :                 auto *mat = state.dataMaterial->materials(MatLay);
    1636      1583664 :                 auto const &matFD(s_hbfd->MaterialFD(MatLay));
    1637      1583664 :                 auto const &condActuator = s_hbfd->SurfaceFD(Surf).condMaterialActuators(Lay);
    1638      1583664 :                 auto const &specHeatActuator = s_hbfd->SurfaceFD(Surf).specHeatMaterialActuators(Lay);
    1639              : 
    1640              :                 // regular outside conditions
    1641              : 
    1642              :                 // Calculate the Dry Heat Conduction Equation
    1643              : 
    1644      1583664 :                 if (mat->ROnly || mat->group == Material::Group::AirGap) { // R Layer or Air Layer  **********
    1645              :                     // Use algebraic equation for TDT based on R
    1646       299648 :                     Real64 const Rlayer(mat->Resistance);
    1647       299648 :                     TDT_i = (TDT_p + (QRadSWOutFD + hgnd * Tgnd + (hconvo + hrad) * Toa + hsky * Tsky) * Rlayer) /
    1648       299648 :                             (1.0 + (hconvo + hgnd + hrad + hsky) * Rlayer);
    1649              : 
    1650       299648 :                 } else { // Regular or phase change material layer
    1651              : 
    1652              :                     // Set Thermal Conductivity. Can be constant, simple linear temp dep or multiple linear segment temp function dep.
    1653      1284016 :                     auto const &matFD_TempCond(matFD.TempCond);
    1654      1284016 :                     assert(matFD_TempCond.u2() >= 3);
    1655      1284016 :                     Real64 const lTC(matFD_TempCond.index(2, 1));
    1656              :                     Real64 kt;
    1657      1284016 :                     if (matFD_TempCond[lTC] + matFD_TempCond[lTC + 1] + matFD_TempCond[lTC + 2] >= 0.0) { // Multiple Linear Segment Function
    1658              :                         // Use average temp of surface and first node for k
    1659            0 :                         kt = terpld(matFD_TempCond, (TDT_i + TDT_p) / 2.0, 1, 2); // 1: Temperature, 2: Thermal conductivity
    1660              :                     } else {
    1661      1284016 :                         kt = mat->Conductivity;      // 20C base conductivity
    1662      1284016 :                         Real64 const kt1(matFD.tk1); // linear coefficient (normally zero)
    1663      1284016 :                         if (kt1 != 0.0) kt = +kt1 * ((TDT_i + TDT_p) / 2.0 - 20.0);
    1664              :                     }
    1665              : 
    1666              :                     // Check for phase change material
    1667      1284016 :                     Real64 const TD_i(TD(i));
    1668      1284016 :                     Real64 const Cpo(mat->SpecHeat); // Specific heat from idf
    1669      1284016 :                     Real64 Cp(Cpo);                  // Specific heat modified if PCM, otherwise equal to Cpo // Will be changed if PCM
    1670      1284016 :                     auto const &matFD_TempEnth(matFD.TempEnth);
    1671      1284016 :                     assert(matFD_TempEnth.u2() >= 3);
    1672      1284016 :                     Real64 const lTE(matFD_TempEnth.index(2, 1));
    1673      1284016 :                     Real64 RhoS(mat->Density);
    1674      1284016 :                     if (mat->hasPCM) {
    1675            0 :                         auto *matPC = dynamic_cast<Material::MaterialPhaseChange *>(mat);
    1676            0 :                         adjustPropertiesForPhaseChange(state, i, Surf, matPC, TD_i, TDT_i, Cp, RhoS, kt);
    1677            0 :                         s_hbfd->SurfaceFD(Surf).EnthalpyF = matPC->enthalpyF;
    1678            0 :                         s_hbfd->SurfaceFD(Surf).EnthalpyM = matPC->enthalpyM;
    1679      1284016 :                     } else if (matFD_TempEnth[lTE] + matFD_TempEnth[lTE + 1] + matFD_TempEnth[lTE + 2] >=
    1680              :                                0.0) { // Phase change material: Use TempEnth data to generate Cp
    1681              :                         // Enthalpy function used to get average specific heat. Updated by GS so enthalpy function is followed.
    1682            0 :                         EnthOld(i) = terpld(matFD_TempEnth, TD_i, 1, 2);  // 1: Temperature, 2: Enthalpy
    1683            0 :                         EnthNew(i) = terpld(matFD_TempEnth, TDT_i, 1, 2); // 1: Temperature, 2: Enthalpy
    1684            0 :                         if (EnthNew(i) != EnthOld(i)) {
    1685            0 :                             Cp = max(Cpo, (EnthNew(i) - EnthOld(i)) / (TDT_i - TD_i));
    1686              :                         }
    1687              :                     } // Phase Change Material option
    1688              : 
    1689              :                     // EMS Conductivity Override
    1690      1284016 :                     if (condActuator.isActuated) {
    1691            0 :                         kt = condActuator.actuatedValue;
    1692              :                     }
    1693              : 
    1694              :                     // EMS Specific Heat Override
    1695      1284016 :                     if (specHeatActuator.isActuated) {
    1696            0 :                         Cp = specHeatActuator.actuatedValue;
    1697              :                     }
    1698              : 
    1699              :                     // Update EMS internal variables
    1700      1284016 :                     s_hbfd->SurfaceFD(Surf).condNodeReport(i) = kt;
    1701      1284016 :                     s_hbfd->SurfaceFD(Surf).specHeatNodeReport(i) = Cp;
    1702              : 
    1703              :                     // Choose Regular or Transparent Insulation Case
    1704      1284016 :                     Real64 const DelX = s_hbfd->ConstructFD(ConstrNum).DelX(Lay);
    1705      1284016 :                     Real64 const Delt_DelX(Delt * DelX);
    1706      1284016 :                     s_hbfd->SurfaceFD(Surf).CpDelXRhoS1(i) = 0.0;                      // Outside face  does not have an outer half node
    1707      1284016 :                     s_hbfd->SurfaceFD(Surf).CpDelXRhoS2(i) = (Cp * DelX * RhoS) / 2.0; // Save this for computing node flux values
    1708              : 
    1709      1284016 :                     if (HMovInsul <= 0.0) { // Regular  case
    1710              : 
    1711      1284016 :                         if (s_hbfd->CondFDSchemeType == CondFDScheme::CrankNicholsonSecondOrder) { // Second Order equation
    1712            0 :                             Real64 const Cp_DelX_RhoS_2Delt(Cp * DelX * RhoS / (2.0 * Delt));
    1713            0 :                             Real64 const kt_2DelX(kt / (2.0 * DelX));
    1714            0 :                             Real64 const hsum(0.5 * (hconvo + hgnd + hrad + hsky));
    1715            0 :                             TDT_i = (QRadSWOutFD + Cp_DelX_RhoS_2Delt * TD_i + kt_2DelX * (TDT_p - TD_i + TD(i + 1)) + hgnd * Tgnd +
    1716            0 :                                      (hconvo + hrad) * Toa + hsky * Tsky - hsum * TD_i) /
    1717            0 :                                     (hsum + kt_2DelX + Cp_DelX_RhoS_2Delt);
    1718      1284016 :                         } else if (s_hbfd->CondFDSchemeType == CondFDScheme::FullyImplicitFirstOrder) { // First Order
    1719      1284016 :                             Real64 const Two_Delt_DelX(2.0 * Delt_DelX);
    1720      1284016 :                             Real64 const Cp_DelX2_RhoS(Cp * pow_2(DelX) * RhoS);
    1721      1284016 :                             Real64 const Two_Delt_kt(2.0 * Delt * kt);
    1722      1284016 :                             TDT_i = (Two_Delt_DelX * (QRadSWOutFD + hgnd * Tgnd + (hconvo + hrad) * Toa + hsky * Tsky) + Cp_DelX2_RhoS * TD_i +
    1723      1284016 :                                      Two_Delt_kt * TDT_p) /
    1724      1284016 :                                     (Two_Delt_DelX * (hconvo + hgnd + hrad + hsky) + Two_Delt_kt + Cp_DelX2_RhoS);
    1725              :                         }
    1726              : 
    1727              :                     } else { // HMovInsul > 0.0: Transparent insulation on outside
    1728              :                         // Transparent insulation additions
    1729              : 
    1730              :                         // Movable Insulation Layer Outside surface temp
    1731              : 
    1732            0 :                         Real64 const TInsulOut((QRadSWOutMvInsulFD + hgnd * Tgnd + HMovInsul * TDT_i + (hconvo + hrad) * Toa + hsky * Tsky) /
    1733            0 :                                                (hconvo + hgnd + HMovInsul + hrad + hsky)); // Temperature of outside face of Outside Insulation
    1734            0 :                         Real64 const Two_Delt_DelX(2.0 * Delt_DelX);
    1735            0 :                         Real64 const Cp_DelX2_RhoS(Cp * pow_2(DelX) * RhoS);
    1736            0 :                         Real64 const Two_Delt_kt(2.0 * Delt * kt);
    1737              : 
    1738              :                         // Wall first node temperature behind Movable insulation
    1739            0 :                         if (s_hbfd->CondFDSchemeType == CondFDScheme::CrankNicholsonSecondOrder) {
    1740            0 :                             TDT_i = (Two_Delt_DelX * (QRadSWOutFD + HMovInsul * TInsulOut) + Cp_DelX2_RhoS * TD_i + Two_Delt_kt * TDT_p) /
    1741            0 :                                     (Two_Delt_DelX * HMovInsul + Two_Delt_kt + Cp_DelX2_RhoS);
    1742            0 :                         } else if (s_hbfd->CondFDSchemeType == CondFDScheme::FullyImplicitFirstOrder) {
    1743              :                             // Currently same as Crank Nicholson, need fully implicit formulation
    1744            0 :                             TDT_i = (Two_Delt_DelX * (QRadSWOutFD + HMovInsul * TInsulOut) + Cp_DelX2_RhoS * TD_i + Two_Delt_kt * TDT_p) /
    1745            0 :                                     (Two_Delt_DelX * HMovInsul + Two_Delt_kt + Cp_DelX2_RhoS);
    1746              :                         } else {
    1747            0 :                             assert(false); // Illegal CondFDSchemeType
    1748              :                         }
    1749              : 
    1750              :                     } // Regular layer or Movable insulation cases
    1751              : 
    1752              :                 } // R layer or Regular layer
    1753              : 
    1754      1583664 :                 CheckFDNodeTempLimits(state, Surf, i, TDT_i);
    1755              : 
    1756      1583664 :                 TDT(i) = TDT_i;
    1757              : 
    1758              :             } // regular detailed FD part or SigmaR SigmaC part
    1759              : 
    1760              :             // Determine net heat flux to outside face
    1761              :             // One formulation that works for Fully Implicit and CrankNicholson and massless wall
    1762              : 
    1763      1583664 :             Real64 const Toa_TDT_i(Toa - TDT_i);
    1764      1583664 :             Real64 const QNetSurfFromOutside(QRadSWOutFD + (hgnd * (-TDT_i + Tgnd) + (hconvo + hrad) * Toa_TDT_i + hsky * (-TDT_i + Tsky)));
    1765              : 
    1766              :             // Same sign convention as CTFs
    1767      1583664 :             state.dataHeatBalSurf->SurfOpaqOutFaceCondFlux(Surf) = -QNetSurfFromOutside;
    1768              : 
    1769              :             // Report all outside BC heat fluxes
    1770      1583664 :             state.dataHeatBalSurf->SurfQdotRadOutRepPerArea(Surf) = -(hgnd * (TDT_i - Tgnd) + hrad * (-Toa_TDT_i) + hsky * (TDT_i - Tsky));
    1771      1583664 :             state.dataHeatBalSurf->SurfQdotRadOutRep(Surf) = surface.Area * state.dataHeatBalSurf->SurfQdotRadOutRepPerArea(Surf);
    1772      1583664 :             state.dataHeatBalSurf->SurfQRadOutReport(Surf) = state.dataHeatBalSurf->SurfQdotRadOutRep(Surf) * state.dataGlobal->TimeStepZoneSec;
    1773              : 
    1774              :         } // regular BC part of the ground and Rain check
    1775      1892578 :     }
    1776              : 
    1777      3137500 :     void InteriorNodeEqns(EnergyPlusData &state,
    1778              :                           int const Delt,                               // Time Increment
    1779              :                           int const i,                                  // Node Index
    1780              :                           int const Lay,                                // Layer Number for Construction
    1781              :                           int const Surf,                               // Surface number
    1782              :                           [[maybe_unused]] Array1D<Real64> const &T,    // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1783              :                           [[maybe_unused]] Array1D<Real64> &TT,         // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1784              :                           [[maybe_unused]] Array1D<Real64> const &Rhov, // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1785              :                           [[maybe_unused]] Array1D<Real64> &RhoT,       // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1786              :                           [[maybe_unused]] Array1D<Real64> &RH,         // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1787              :                           Array1D<Real64> const &TD,                    // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1788              :                           Array1D<Real64> &TDT,                         // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1789              :                           Array1D<Real64> &EnthOld,                     // Old Nodal enthalpy
    1790              :                           Array1D<Real64> &EnthNew                      // New Nodal enthalpy
    1791              :     )
    1792              :     {
    1793              : 
    1794              :         // SUBROUTINE INFORMATION:
    1795              :         //       AUTHOR         Richard Liesen
    1796              :         //       DATE WRITTEN   November, 2003
    1797              :         //       MODIFIED       May 2011, B. Griffith and P. Tabares
    1798              :         //       RE-ENGINEERED  C. O. Pedersen, 2006
    1799              : 
    1800      3137500 :         int const ConstrNum(state.dataSurface->Surface(Surf).Construction);
    1801              : 
    1802      3137500 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    1803              : 
    1804      3137500 :         int const MatLay(state.dataConstruction->Construct(ConstrNum).LayerPoint(Lay));
    1805      3137500 :         auto *mat = state.dataMaterial->materials(MatLay);
    1806      3137500 :         auto const &matFD = s_hbfd->MaterialFD(MatLay);
    1807      3137500 :         auto const &condActuator = s_hbfd->SurfaceFD(Surf).condMaterialActuators(Lay);
    1808      3137500 :         auto const &specHeatActuator = s_hbfd->SurfaceFD(Surf).specHeatMaterialActuators(Lay);
    1809              : 
    1810      3137500 :         Real64 const TD_i(TD(i));
    1811              : 
    1812      3137500 :         Real64 const TDT_m(TDT(i - 1));
    1813      3137500 :         Real64 TDT_i(TDT(i));
    1814      3137500 :         Real64 const TDT_p(TDT(i + 1));
    1815      3137500 :         Real64 const TDT_mi((TDT_m + TDT_i) / 2.0);
    1816      3137500 :         Real64 const TDT_ip((TDT_i + TDT_p) / 2.0);
    1817              : 
    1818              :         //  Set Thermal Conductivity.  Can be constant, simple linear temp dep or multiple linear segment temp function dep.
    1819      3137500 :         auto const &matFD_TempCond(matFD.TempCond);
    1820      3137500 :         assert(matFD_TempCond.u2() >= 3);
    1821      3137500 :         Real64 const lTC(matFD_TempCond.index(2, 1));
    1822              :         Real64 ktA1; // Variable Outer Thermal conductivity in temperature equation
    1823              :         Real64 ktA2; // Thermal Inner conductivity in temperature equation
    1824      3137500 :         if (matFD_TempCond[lTC] + matFD_TempCond[lTC + 1] + matFD_TempCond[lTC + 2] >= 0.0) { // Multiple Linear Segment Function
    1825            0 :             ktA1 = terpld(matFD.TempCond, TDT_ip, 1, 2);                                      // 1: Temperature, 2: Thermal conductivity
    1826            0 :             ktA2 = terpld(matFD.TempCond, TDT_mi, 1, 2);                                      // 1: Temperature, 2: Thermal conductivity
    1827              :         } else {
    1828      3137500 :             ktA1 = ktA2 = mat->Conductivity; // 20C base conductivity
    1829      3137500 :             Real64 const kt1(matFD.tk1);     // temperature coefficient for simple temp dep k. // linear coefficient (normally zero)
    1830      3137500 :             if (kt1 != 0.0) {
    1831            0 :                 ktA1 += kt1 * (TDT_ip - 20.0);
    1832            0 :                 ktA2 += kt1 * (TDT_mi - 20.0);
    1833              :             }
    1834              :         }
    1835              : 
    1836      3137500 :         Real64 const Cpo(mat->SpecHeat); // Const Cp from input
    1837      3137500 :         Real64 Cp(Cpo);                  // Cp used // Will be changed if PCM
    1838      3137500 :         Real64 kt(0.0);
    1839      3137500 :         auto const &matFD_TempEnth(matFD.TempEnth);
    1840      3137500 :         assert(matFD_TempEnth.u2() >= 3);
    1841      3137500 :         Real64 const lTE(matFD_TempEnth.index(2, 1));
    1842      3137500 :         Real64 RhoS(mat->Density);
    1843      3137500 :         if (mat->hasPCM) {
    1844            0 :             auto *matPC = dynamic_cast<Material::MaterialPhaseChange *>(mat);
    1845            0 :             adjustPropertiesForPhaseChange(state, i, Surf, matPC, TD_i, TDT_i, Cp, RhoS, kt);
    1846            0 :             ktA1 = matPC->getConductivity(TDT_ip);
    1847            0 :             ktA2 = matPC->getConductivity(TDT_mi);
    1848      3137500 :         } else if (matFD_TempEnth[lTE] + matFD_TempEnth[lTE + 1] + matFD_TempEnth[lTE + 2] >= 0.0) { // Phase change material: Use TempEnth data
    1849            0 :             EnthOld(i) = terpld(matFD_TempEnth, TD_i, 1, 2);                                         // 1: Temperature, 2: Enthalpy
    1850            0 :             EnthNew(i) = terpld(matFD_TempEnth, TDT_i, 1, 2);                                        // 1: Temperature, 2: Enthalpy
    1851            0 :             if (EnthNew(i) != EnthOld(i)) {
    1852            0 :                 Cp = max(Cpo, (EnthNew(i) - EnthOld(i)) / (TDT_i - TD_i));
    1853              :             }
    1854              :         } // Phase Change case
    1855              : 
    1856              :         // EMS Conductivity Override
    1857      3137500 :         if (condActuator.isActuated) {
    1858            0 :             kt = condActuator.actuatedValue;
    1859            0 :             ktA1 = kt;
    1860            0 :             ktA2 = kt;
    1861              :         }
    1862              : 
    1863              :         // EMS Specific Heat Override
    1864      3137500 :         if (specHeatActuator.isActuated) {
    1865            0 :             Cp = specHeatActuator.actuatedValue;
    1866              :         }
    1867              : 
    1868              :         // Update EMS internal variables
    1869      3137500 :         s_hbfd->SurfaceFD(Surf).condNodeReport(i) = kt;
    1870      3137500 :         s_hbfd->SurfaceFD(Surf).specHeatNodeReport(i) = Cp;
    1871              : 
    1872      3137500 :         Real64 const DelX(s_hbfd->ConstructFD(ConstrNum).DelX(Lay));
    1873      3137500 :         Real64 const Cp_DelX_RhoS_Delt(Cp * DelX * RhoS / Delt);
    1874              : 
    1875      3137500 :         switch (s_hbfd->CondFDSchemeType) {
    1876            0 :         case CondFDScheme::CrankNicholsonSecondOrder: { // Adams-Moulton second order
    1877            0 :             Real64 const inv2DelX(1.0 / (2.0 * DelX));
    1878            0 :             TDT_i = ((Cp_DelX_RhoS_Delt * TD_i) + ((ktA1 * (TD(i + 1) - TD_i + TDT_p) + ktA2 * (TD(i - 1) - TD_i + TDT_m)) * inv2DelX)) /
    1879            0 :                     (((ktA1 + ktA2) * inv2DelX) + Cp_DelX_RhoS_Delt);
    1880            0 :         } break;
    1881      3137500 :         case CondFDScheme::FullyImplicitFirstOrder: { // Adams-Moulton First order
    1882      3137500 :             Real64 const invDelX(1.0 / DelX);
    1883      3137500 :             TDT_i = ((Cp_DelX_RhoS_Delt * TD_i) + ((ktA2 * TDT_m) + (ktA1 * TDT_p)) * invDelX) / (((ktA1 + ktA2) * invDelX) + Cp_DelX_RhoS_Delt);
    1884      3137500 :         } break;
    1885            0 :         default:
    1886            0 :             assert(false); // Illegal CondFDSchemeType
    1887              :         }
    1888              : 
    1889      3137500 :         CheckFDNodeTempLimits(state, Surf, i, TDT_i);
    1890              : 
    1891      3137500 :         TDT(i) = TDT_i;
    1892      3137500 :         s_hbfd->SurfaceFD(Surf).CpDelXRhoS1(i) = s_hbfd->SurfaceFD(Surf).CpDelXRhoS2(i) =
    1893      3137500 :             (Cp * DelX * RhoS) / 2.0; // Save this for computing node flux values, half nodes are the same here
    1894      3137500 :     }
    1895              : 
    1896      4175014 :     void IntInterfaceNodeEqns(EnergyPlusData &state,
    1897              :                               int const Delt,                                  // Time Increment
    1898              :                               int const i,                                     // Node Index
    1899              :                               int const Lay,                                   // Layer Number for Construction
    1900              :                               int const SurfNum,                               // Surface number
    1901              :                               [[maybe_unused]] Array1D<Real64> const &T,       // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1902              :                               [[maybe_unused]] Array1D<Real64> &TT,            // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1903              :                               [[maybe_unused]] Array1D<Real64> const &Rhov,    // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1904              :                               [[maybe_unused]] Array1D<Real64> &RhoT,          // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    1905              :                               [[maybe_unused]] Array1D<Real64> &RH,            // RELATIVE HUMIDITY.
    1906              :                               Array1D<Real64> const &TD,                       // OLD NODE TEMPERATURES OF EACH HEAT TRANSFER SURF IN CONDFD.
    1907              :                               Array1D<Real64> &TDT,                            // NEW NODE TEMPERATURES OF EACH HEAT TRANSFER SURF IN CONDFD.
    1908              :                               [[maybe_unused]] Array1D<Real64> const &EnthOld, // Old Nodal enthalpy
    1909              :                               Array1D<Real64> &EnthNew,                        // New Nodal enthalpy
    1910              :                               [[maybe_unused]] int const GSiter                // Iteration number of Gauss Seidel iteration
    1911              :     )
    1912              :     {
    1913              : 
    1914              :         // SUBROUTINE INFORMATION:
    1915              :         //       AUTHOR         Richard Liesen
    1916              :         //       DATE WRITTEN   November, 2003
    1917              :         //       MODIFIED       May 2011, B. Griffith, P. Tabares,  add first order fully implicit, bug fixes, cleanup
    1918              :         //       RE-ENGINEERED  Curtis Pedersen, Changed to Implicit mode and included enthalpy.  FY2006
    1919              : 
    1920              :         // PURPOSE OF THIS SUBROUTINE:
    1921              :         // calculate finite difference heat transfer for nodes that interface two different material layers inside construction
    1922              : 
    1923      4175014 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    1924      4175014 :         auto const &surface = state.dataSurface->Surface(SurfNum);
    1925      4175014 :         auto &surfFD = s_hbfd->SurfaceFD(SurfNum);
    1926              : 
    1927      4175014 :         if (surface.HeatTransferAlgorithm == DataSurfaces::HeatTransferModel::CondFD) { // HT Algo issue
    1928              : 
    1929      4175014 :             int const ConstrNum(surface.Construction);
    1930      4175014 :             auto const &construct(state.dataConstruction->Construct(ConstrNum));
    1931              : 
    1932      4175014 :             int const MatLay(construct.LayerPoint(Lay));
    1933      4175014 :             auto *mat = state.dataMaterial->materials(MatLay);
    1934              : 
    1935      4175014 :             int const MatLay2(construct.LayerPoint(Lay + 1));
    1936      4175014 :             auto *mat2 = state.dataMaterial->materials(MatLay2);
    1937              : 
    1938      4175014 :             auto const &condActuator1 = surfFD.condMaterialActuators(Lay);
    1939      4175014 :             auto const &condActuator2 = surfFD.condMaterialActuators(Lay + 1);
    1940              : 
    1941      4175014 :             auto const &specHeatActuator1 = surfFD.specHeatMaterialActuators(Lay);
    1942      4175014 :             auto const &specHeatActuator2 = surfFD.specHeatMaterialActuators(Lay + 1);
    1943              : 
    1944      4175014 :             auto const &heatFluxActuator = surfFD.heatSourceFluxMaterialActuators(Lay);
    1945              : 
    1946      4175014 :             Real64 const TDT_m(TDT(i - 1));
    1947      4175014 :             Real64 const TDT_p(TDT(i + 1));
    1948              : 
    1949      4175014 :             bool const RLayerPresent(mat->ROnly || mat->group == Material::Group::AirGap);
    1950      4175014 :             bool const RLayer2Present(mat2->ROnly || mat2->group == Material::Group::AirGap);
    1951              : 
    1952      4175014 :             Real64 const Rlayer(mat->Resistance);   // Resistance value of R Layer
    1953      4175014 :             Real64 const Rlayer2(mat2->Resistance); // Resistance value of next layer to inside
    1954              : 
    1955      4175014 :             if (RLayerPresent && RLayer2Present) {
    1956              : 
    1957            0 :                 TDT(i) = (Rlayer2 * TDT_m + Rlayer * TDT_p) / (Rlayer + Rlayer2); // Two adjacent R layers
    1958              : 
    1959              :             } else {
    1960              : 
    1961      4175014 :                 auto const &matFD(s_hbfd->MaterialFD(MatLay));
    1962      4175014 :                 auto const &matFD2(s_hbfd->MaterialFD(MatLay2));
    1963      4175014 :                 Real64 TDT_i(TDT(i));
    1964              : 
    1965              :                 // Set Thermal Conductivity. Can be constant, simple linear temp dep or multiple linear segment temp function dep.
    1966              : 
    1967      4175014 :                 Real64 kt1(0.0);
    1968      4175014 :                 if (!RLayerPresent) {
    1969      4175014 :                     auto const &matFD_TempCond(matFD.TempCond);
    1970      4175014 :                     assert(matFD_TempCond.u2() >= 3);
    1971      4175014 :                     Real64 const lTC(matFD_TempCond.index(2, 1));
    1972      4175014 :                     if (matFD_TempCond[lTC] + matFD_TempCond[lTC + 1] + matFD_TempCond[lTC + 2] >= 0.0) { // Multiple Linear Segment Function
    1973            0 :                         kt1 = terpld(matFD.TempCond, (TDT_i + TDT_m) / 2.0, 1, 2);                        // 1: Temperature, 2: Thermal conductivity
    1974              :                     } else {
    1975      4175014 :                         kt1 = mat->Conductivity;      // 20C base conductivity
    1976      4175014 :                         Real64 const kt11(matFD.tk1); // temperature coefficient for simple temp dep k. // linear coefficient (normally zero)
    1977      4175014 :                         if (kt11 != 0.0) kt1 += kt11 * ((TDT_i + TDT_m) / 2.0 - 20.0);
    1978              :                     }
    1979              :                 }
    1980              : 
    1981      4175014 :                 Real64 kt2(0.0);
    1982      4175014 :                 if (!RLayer2Present) {
    1983      4175014 :                     auto const &matFD2_TempCond(matFD2.TempCond);
    1984      4175014 :                     assert(matFD2_TempCond.u2() >= 3);
    1985      4175014 :                     Real64 const lTC2(matFD2_TempCond.index(2, 1));
    1986      4175014 :                     if (matFD2_TempCond[lTC2] + matFD2_TempCond[lTC2 + 1] + matFD2_TempCond[lTC2 + 2] >= 0.0) { // Multiple Linear Segment Function
    1987            0 :                         kt2 = terpld(matFD2_TempCond, (TDT_i + TDT_p) / 2.0, 1, 2); // 1: Temperature, 2: Thermal conductivity
    1988              :                     } else {
    1989      4175014 :                         kt2 = mat2->Conductivity;      // 20C base conductivity
    1990      4175014 :                         Real64 const kt21(matFD2.tk1); // temperature coefficient for simple temp dep k. // linear coefficient (normally zero)
    1991      4175014 :                         if (kt21 != 0.0) kt2 += kt21 * ((TDT_i + TDT_p) / 2.0 - 20.0);
    1992              :                     }
    1993              :                 }
    1994              : 
    1995      4175014 :                 Real64 RhoS1(mat->Density);
    1996      4175014 :                 Real64 const Cpo1(mat->SpecHeat); // constant Cp from input file
    1997      4175014 :                 Real64 Cp1(Cpo1);                 // Will be reset if PCM
    1998      4175014 :                 Real64 const Delx1(s_hbfd->ConstructFD(ConstrNum).DelX(Lay));
    1999              : 
    2000      4175014 :                 Real64 RhoS2(mat2->Density);
    2001      4175014 :                 Real64 const Cpo2(mat2->SpecHeat);
    2002      4175014 :                 Real64 Cp2(Cpo2); // will be reset if PCM
    2003      4175014 :                 Real64 const Delx2(s_hbfd->ConstructFD(ConstrNum).DelX(Lay + 1));
    2004              : 
    2005              :                 // Calculate the Dry Heat Conduction Equation
    2006              : 
    2007              :                 // Source/Sink Flux Capability ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    2008              : 
    2009      4175014 :                 Real64 QSSFlux = 0.0;
    2010      4175014 :                 if ((surface.Area > 0.0) && (construct.SourceSinkPresent && Lay == construct.SourceAfterLayer)) {
    2011              :                     // Source/Sink flux value at a layer interface // Includes QPV Source
    2012            0 :                     QSSFlux = (state.dataHeatBalFanSys->QRadSysSource(SurfNum) + state.dataHeatBalFanSys->QPVSysSource(SurfNum)) / surface.Area;
    2013              :                 }
    2014              : 
    2015              :                 // update report variables
    2016      4175014 :                 auto &surfFD = s_hbfd->SurfaceFD(SurfNum);
    2017              : 
    2018              :                 // only includes internal heat source
    2019      4175014 :                 surfFD.heatSourceInternalFluxLayerReport(Lay) = QSSFlux * surface.Area;
    2020      4175014 :                 surfFD.heatSourceInternalFluxEnergyLayerReport(Lay) = QSSFlux * surface.Area * state.dataGlobal->TimeStepZoneSec;
    2021              : 
    2022              :                 // Add EMS actuated value
    2023      4175014 :                 if (heatFluxActuator.isActuated) {
    2024       321224 :                     Real64 actuatedVal = heatFluxActuator.actuatedValue;
    2025       321224 :                     if (actuatedVal >= 0) {
    2026       321224 :                         QSSFlux += heatFluxActuator.actuatedValue;
    2027              :                     } else {
    2028            0 :                         ShowSevereError(state, fmt::format("Surface: {}, Material: {}", surface.Name, mat->Name));
    2029            0 :                         ShowContinueError(state, "EMS Actuator does not support negative values");
    2030            0 :                         ShowFatalError(state, "Program terminates due to preceding conditions.");
    2031              :                     }
    2032              : 
    2033              :                     // Update report variables
    2034              :                     // Only includes the EMS values
    2035       321224 :                     surfFD.heatSourceEMSFluxLayerReport(Lay) = heatFluxActuator.actuatedValue * surface.Area;
    2036       321224 :                     surfFD.heatSourceEMSFluxEnergyLayerReport(Lay) =
    2037       321224 :                         heatFluxActuator.actuatedValue * surface.Area * state.dataGlobal->TimeStepZoneSec;
    2038              :                 }
    2039              : 
    2040              :                 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    2041              : 
    2042      4175014 :                 Real64 const TD_i(TD(i));
    2043              : 
    2044      4175014 :                 auto const &matFD_TempEnth(matFD.TempEnth);
    2045      4175014 :                 assert(matFD_TempEnth.u2() >= 3);
    2046      4175014 :                 Real64 const lTE(matFD_TempEnth.index(2, 1));
    2047      4175014 :                 Real64 const matFD_sum(matFD_TempEnth[lTE] + matFD_TempEnth[lTE + 1] + matFD_TempEnth[lTE + 2]);
    2048              : 
    2049      4175014 :                 auto const &matFD2_TempEnth(matFD2.TempEnth);
    2050      4175014 :                 assert(matFD2_TempEnth.u2() >= 3);
    2051      4175014 :                 Real64 const lTE2(matFD2_TempEnth.index(2, 1));
    2052      4175014 :                 Real64 const matFD2_sum(matFD2_TempEnth[lTE2] + matFD2_TempEnth[lTE2 + 1] + matFD2_TempEnth[lTE2 + 2]);
    2053              : 
    2054      4175014 :                 if (RLayerPresent && !RLayer2Present) { // R-layer first
    2055              : 
    2056              :                     // Check for PCM second layer
    2057            0 :                     if (mat2->hasPCM) {
    2058            0 :                         auto *matPC2 = dynamic_cast<Material::MaterialPhaseChange *>(mat);
    2059            0 :                         assert(matPC2 != nullptr);
    2060            0 :                         adjustPropertiesForPhaseChange(state, i, SurfNum, matPC2, TD_i, TDT_i, Cp2, RhoS2, kt2);
    2061            0 :                     } else if ((matFD_sum < 0.0) && (matFD2_sum > 0.0)) {            // Phase change material Layer2, Use TempEnth Data
    2062            0 :                         Real64 const Enth2Old(terpld(matFD2_TempEnth, TD_i, 1, 2));  // 1: Temperature, 2: Thermal conductivity
    2063            0 :                         Real64 const Enth2New(terpld(matFD2_TempEnth, TDT_i, 1, 2)); // 1: Temperature, 2: Thermal conductivity
    2064            0 :                         EnthNew(i) = Enth2New; // This node really doesn't have an enthalpy, this gives it a value
    2065            0 :                         if ((std::abs(Enth2New - Enth2Old) > smalldiff) && (std::abs(TDT_i - TD_i) > smalldiff)) {
    2066            0 :                             Cp2 = max(Cpo2, (Enth2New - Enth2Old) / (TDT_i - TD_i));
    2067              :                         }
    2068              :                     }
    2069              : 
    2070              :                     // EMS Conductivity 2 Override
    2071            0 :                     if (condActuator2.isActuated) {
    2072            0 :                         kt2 = condActuator1.actuatedValue;
    2073              :                     }
    2074              : 
    2075              :                     // EMS Specific Heat 2 Override
    2076            0 :                     if (specHeatActuator2.isActuated) {
    2077            0 :                         Cp2 = specHeatActuator1.actuatedValue;
    2078              :                     }
    2079              : 
    2080              :                     // Update EMS internal variables
    2081            0 :                     surfFD.condNodeReport(i) = kt1;
    2082            0 :                     surfFD.specHeatNodeReport(i) = Cp1;
    2083            0 :                     surfFD.condNodeReport(i + 1) = kt2;
    2084            0 :                     surfFD.specHeatNodeReport(i + 1) = Cp2;
    2085              : 
    2086              :                     // R layer first, then PCM or regular layer
    2087            0 :                     Real64 const Delt_Delx2(Delt * Delx2);
    2088            0 :                     Real64 const Cp2_fac(Cp2 * pow_2(Delx2) * RhoS2 * Rlayer);
    2089            0 :                     Real64 const Delt_kt2_Rlayer(Delt * kt2 * Rlayer);
    2090            0 :                     if (s_hbfd->CondFDSchemeType == CondFDScheme::CrankNicholsonSecondOrder) {
    2091            0 :                         TDT_i = (2.0 * Delt_Delx2 * QSSFlux * Rlayer + (Cp2_fac - Delt_Delx2 - Delt_kt2_Rlayer) * TD_i +
    2092            0 :                                  Delt_Delx2 * (TD(i - 1) + TDT_m) + Delt_kt2_Rlayer * (TD(i + 1) + TDT_p)) /
    2093            0 :                                 (Delt_Delx2 + Delt_kt2_Rlayer + Cp2_fac);
    2094            0 :                     } else if (s_hbfd->CondFDSchemeType == CondFDScheme::FullyImplicitFirstOrder) {
    2095            0 :                         Real64 const Two_Delt_Delx2(2.0 * Delt_Delx2);
    2096            0 :                         Real64 const Two_Delt_kt2_Rlayer(2.0 * Delt_kt2_Rlayer);
    2097            0 :                         TDT_i = (Two_Delt_Delx2 * (QSSFlux * Rlayer + TDT_m) + Cp2_fac * TD_i + Two_Delt_kt2_Rlayer * TDT_p) /
    2098            0 :                                 (Two_Delt_Delx2 + Two_Delt_kt2_Rlayer + Cp2_fac);
    2099              :                     }
    2100              : 
    2101            0 :                     CheckFDNodeTempLimits(state, SurfNum, i, TDT_i);
    2102              : 
    2103            0 :                     surfFD.CpDelXRhoS1(i) = 0.0;                         //  - rlayer has no capacitance, so this is zero
    2104            0 :                     surfFD.CpDelXRhoS2(i) = (Cp2 * Delx2 * RhoS2) / 2.0; // Save this for computing node flux values
    2105              : 
    2106      4175014 :                 } else if (!RLayerPresent && RLayer2Present) { // R-layer second
    2107              : 
    2108              :                     // Check for PCM layer before R layer
    2109            0 :                     if (mat->hasPCM) {
    2110            0 :                         auto *matPC = dynamic_cast<Material::MaterialPhaseChange *>(mat);
    2111            0 :                         adjustPropertiesForPhaseChange(state, i, SurfNum, matPC, TD_i, TDT_i, Cp1, RhoS1, kt1);
    2112            0 :                     } else if ((matFD_sum > 0.0) && (matFD2_sum < 0.0)) {           // Phase change material Layer1, Use TempEnth Data
    2113            0 :                         Real64 const Enth1Old(terpld(matFD_TempEnth, TD_i, 1, 2));  // 1: Temperature, 2: Thermal conductivity
    2114            0 :                         Real64 const Enth1New(terpld(matFD_TempEnth, TDT_i, 1, 2)); // 1: Temperature, 2: Thermal conductivity
    2115            0 :                         EnthNew(i) = Enth1New; // This node really doesn't have an enthalpy, this gives it a value
    2116            0 :                         if ((std::abs(Enth1New - Enth1Old) > smalldiff) && (std::abs(TDT_i - TD_i) > smalldiff)) {
    2117            0 :                             Cp1 = max(Cpo1, (Enth1New - Enth1Old) / (TDT_i - TD_i));
    2118              :                         }
    2119              :                     }
    2120              : 
    2121              :                     // EMS Conductivity 1 Override
    2122            0 :                     if (condActuator1.isActuated) {
    2123            0 :                         kt1 = condActuator1.actuatedValue;
    2124              :                     }
    2125              : 
    2126              :                     // EMS Specific Heat 1 Override
    2127            0 :                     if (specHeatActuator1.isActuated) {
    2128            0 :                         Cp1 = specHeatActuator1.actuatedValue;
    2129              :                     }
    2130              : 
    2131              :                     // Update EMS internal variables
    2132            0 :                     surfFD.condNodeReport(i) = kt1;
    2133            0 :                     surfFD.specHeatNodeReport(i) = Cp1;
    2134            0 :                     surfFD.condNodeReport(i + 1) = kt2;
    2135            0 :                     surfFD.specHeatNodeReport(i + 1) = Cp2;
    2136              : 
    2137            0 :                     Real64 const Delt_Delx1(Delt * Delx1);
    2138            0 :                     Real64 const Cp1_fac(Cp1 * pow_2(Delx1) * RhoS1 * Rlayer2);
    2139            0 :                     Real64 const Delt_kt1_Rlayer2(Delt * kt1 * Rlayer2);
    2140            0 :                     if (s_hbfd->CondFDSchemeType == CondFDScheme::CrankNicholsonSecondOrder) {
    2141            0 :                         TDT_i = (2.0 * Delt_Delx1 * QSSFlux * Rlayer2 + (Cp1_fac - Delt_Delx1 - Delt_kt1_Rlayer2) * TD_i +
    2142            0 :                                  Delt_Delx1 * (TD(i + 1) + TDT_p) + Delt_kt1_Rlayer2 * (TD(i - 1) + TDT_m)) /
    2143            0 :                                 (Delt_Delx1 + Delt_kt1_Rlayer2 + Cp1_fac);
    2144            0 :                     } else if (s_hbfd->CondFDSchemeType == CondFDScheme::FullyImplicitFirstOrder) {
    2145            0 :                         Real64 const Two_Delt_Delx1(2.0 * Delt_Delx1);
    2146            0 :                         Real64 const Two_Delt_kt1_Rlayer2(2.0 * Delt_kt1_Rlayer2);
    2147            0 :                         TDT_i = (Two_Delt_Delx1 * (QSSFlux * Rlayer2 + TDT_p) + Cp1_fac * TD_i + Two_Delt_kt1_Rlayer2 * TDT_m) /
    2148            0 :                                 (Two_Delt_Delx1 + Two_Delt_kt1_Rlayer2 + Cp1_fac);
    2149              :                     }
    2150              : 
    2151            0 :                     CheckFDNodeTempLimits(state, SurfNum, i, TDT_i);
    2152              : 
    2153            0 :                     surfFD.CpDelXRhoS1(i) = (Cp1 * Delx1 * RhoS1) / 2.0; // Save this for computing node flux values
    2154            0 :                     surfFD.CpDelXRhoS2(i) = 0.0;                         //  - rlayer has no capacitance, so this is zero
    2155              : 
    2156            0 :                 } else { // Regular or Phase Change on both sides of interface
    2157              : 
    2158              :                     // Consider the various PCM material location cases
    2159      4175014 :                     if ((matFD_sum > 0.0) && (matFD2_sum > 0.0)) { // Phase change material both layers, Use TempEnth Data
    2160              : 
    2161            0 :                         Real64 const Enth1Old(terpld(matFD_TempEnth, TD_i, 1, 2));   // 1: Temperature, 2: Thermal conductivity
    2162            0 :                         Real64 const Enth2Old(terpld(matFD2_TempEnth, TD_i, 1, 2));  // 1: Temperature, 2: Thermal conductivity
    2163            0 :                         Real64 const Enth1New(terpld(matFD_TempEnth, TDT_i, 1, 2));  // 1: Temperature, 2: Thermal conductivity
    2164            0 :                         Real64 const Enth2New(terpld(matFD2_TempEnth, TDT_i, 1, 2)); // 1: Temperature, 2: Thermal conductivity
    2165              : 
    2166            0 :                         EnthNew(i) = Enth1New; // This node really doesn't have an enthalpy, this gives it a value
    2167              : 
    2168            0 :                         if ((std::abs(Enth1New - Enth1Old) > smalldiff) && (std::abs(TDT_i - TD_i) > smalldiff)) {
    2169            0 :                             Cp1 = max(Cpo1, (Enth1New - Enth1Old) / (TDT_i - TD_i));
    2170              :                         }
    2171              : 
    2172            0 :                         if ((std::abs(Enth2New - Enth2Old) > smalldiff) && (std::abs(TDT_i - TD_i) > smalldiff)) {
    2173            0 :                             Cp2 = max(Cpo2, (Enth2New - Enth2Old) / (TDT_i - TD_i));
    2174              :                         }
    2175              : 
    2176              :                         // if
    2177              : 
    2178      4175014 :                     } else if ((matFD_sum > 0.0) && (matFD2_sum < 0.0)) { // Phase change material Layer1, Use TempEnth Data
    2179              : 
    2180            0 :                         Real64 const Enth1Old(terpld(matFD_TempEnth, TD_i, 1, 2));  // 1: Temperature, 2: Thermal conductivity
    2181            0 :                         Real64 const Enth1New(terpld(matFD_TempEnth, TDT_i, 1, 2)); // 1: Temperature, 2: Thermal conductivity
    2182            0 :                         EnthNew(i) = Enth1New; // This node really doesn't have an enthalpy, this gives it a value
    2183              : 
    2184            0 :                         if ((std::abs(Enth1New - Enth1Old) > smalldiff) && (std::abs(TDT_i - TD_i) > smalldiff)) {
    2185            0 :                             Cp1 = max(Cpo1, (Enth1New - Enth1Old) / (TDT_i - TD_i));
    2186              :                         }
    2187              : 
    2188      4175014 :                     } else if ((matFD_sum < 0.0) && (matFD2_sum > 0.0)) { // Phase change material Layer2, Use TempEnth Data
    2189              : 
    2190            0 :                         Real64 const Enth2Old(terpld(matFD2_TempEnth, TD_i, 1, 2));  // 1: Temperature, 2: Thermal conductivity
    2191            0 :                         Real64 const Enth2New(terpld(matFD2_TempEnth, TDT_i, 1, 2)); // 1: Temperature, 2: Thermal conductivity
    2192            0 :                         EnthNew(i) = Enth2New; // This node really doesn't have an enthalpy, this gives it a value
    2193              : 
    2194            0 :                         if ((std::abs(Enth2New - Enth2Old) > smalldiff) && (std::abs(TDT_i - TD_i) > smalldiff)) {
    2195            0 :                             Cp2 = max(Cpo2, (Enth2New - Enth2Old) / (TDT_i - TD_i));
    2196              :                         }
    2197              : 
    2198              :                     } // Phase change material check
    2199              : 
    2200      4175014 :                     if (mat->hasPCM) {
    2201            0 :                         auto *matPC = dynamic_cast<Material::MaterialPhaseChange *>(mat);
    2202            0 :                         adjustPropertiesForPhaseChange(state, i, SurfNum, matPC, TD_i, TDT_i, Cp1, RhoS1, kt1);
    2203              :                     }
    2204      4175014 :                     if (mat2->hasPCM) {
    2205            0 :                         auto *matPC2 = dynamic_cast<Material::MaterialPhaseChange *>(mat2);
    2206            0 :                         adjustPropertiesForPhaseChange(state, i, SurfNum, matPC2, TD_i, TDT_i, Cp2, RhoS2, kt2);
    2207              :                     }
    2208              : 
    2209              :                     // EMS Conductivity 1 Override
    2210      4175014 :                     if (condActuator1.isActuated) {
    2211       955830 :                         kt1 = condActuator1.actuatedValue;
    2212              :                     }
    2213              : 
    2214              :                     // EMS Conductivity 2 Override
    2215      4175014 :                     if (condActuator2.isActuated) {
    2216       955830 :                         kt2 = condActuator2.actuatedValue;
    2217              :                     }
    2218              : 
    2219              :                     // EMS Specific Heat 1 Override
    2220      4175014 :                     if (specHeatActuator1.isActuated) {
    2221       955830 :                         Cp1 = specHeatActuator1.actuatedValue;
    2222              :                     }
    2223              : 
    2224              :                     // EMS Specific Heat 2 Override
    2225      4175014 :                     if (specHeatActuator2.isActuated) {
    2226       955830 :                         Cp2 = specHeatActuator2.actuatedValue;
    2227              :                     }
    2228              : 
    2229              :                     // Update EMS internal variables
    2230      4175014 :                     surfFD.condNodeReport(i) = kt1;
    2231      4175014 :                     surfFD.specHeatNodeReport(i) = Cp1;
    2232      4175014 :                     surfFD.condNodeReport(i + 1) = kt2;
    2233      4175014 :                     surfFD.specHeatNodeReport(i + 1) = Cp2;
    2234              : 
    2235      4175014 :                     Real64 const Delt_Delx1(Delt * Delx1);
    2236      4175014 :                     Real64 const Delt_Delx2(Delt * Delx2);
    2237      4175014 :                     Real64 const Delt_Delx1_kt2(Delt_Delx1 * kt2);
    2238      4175014 :                     Real64 const Delt_Delx2_kt1(Delt_Delx2 * kt1);
    2239      4175014 :                     Real64 const Delt_sum(Delt_Delx1_kt2 + Delt_Delx2_kt1);
    2240      4175014 :                     Real64 const Cp1_fac(Cp1 * pow_2(Delx1) * Delx2 * RhoS1);
    2241      4175014 :                     Real64 const Cp2_fac(Cp2 * Delx1 * pow_2(Delx2) * RhoS2);
    2242      4175014 :                     Real64 const Cp_fac(Cp1_fac + Cp2_fac);
    2243      4175014 :                     if (s_hbfd->CondFDSchemeType ==
    2244              :                         CondFDScheme::CrankNicholsonSecondOrder) { // Regular Internal Interface Node with Source/sink using Adams Moulton second
    2245              :                         // order
    2246            0 :                         TDT_i = (2.0 * Delt_Delx1 * Delx2 * QSSFlux + (Cp_fac - Delt_sum) * TD_i + Delt_Delx1_kt2 * (TD(i + 1) + TDT_p) +
    2247            0 :                                  Delt_Delx2_kt1 * (TD(i - 1) + TDT_m)) /
    2248            0 :                                 (Delt_sum + Cp_fac);
    2249      4175014 :                     } else if (s_hbfd->CondFDSchemeType == CondFDScheme::FullyImplicitFirstOrder) { // First order adams moulton
    2250      4175014 :                         TDT_i = (2.0 * (Delt_Delx1 * Delx2 * QSSFlux + Delt_Delx2_kt1 * TDT_m + Delt_Delx1_kt2 * TDT_p) + Cp_fac * TD_i) /
    2251      4175014 :                                 (2.0 * (Delt_Delx2_kt1 + Delt_Delx1_kt2) + Cp_fac);
    2252              :                     }
    2253              : 
    2254      4175014 :                     CheckFDNodeTempLimits(state, SurfNum, i, TDT_i);
    2255              : 
    2256      4175014 :                     surfFD.CpDelXRhoS1(i) = (Cp1 * Delx1 * RhoS1) / 2.0; // Save this for computing node flux values
    2257      4175014 :                     surfFD.CpDelXRhoS2(i) = (Cp2 * Delx2 * RhoS2) / 2.0; // Save this for computing node flux values
    2258              : 
    2259      4175014 :                     if (construct.SourceSinkPresent && (Lay == construct.SourceAfterLayer)) {
    2260            0 :                         state.dataHeatBalFanSys->TCondFDSourceNode(SurfNum) = TDT_i; // Transfer node temp to Radiant System
    2261            0 :                         state.dataHeatBalSurf->SurfTempSource(SurfNum) = TDT_i;      // Transfer node temp to DataHeatBalSurface module
    2262            0 :                         surfFD.QSource = QSSFlux;
    2263            0 :                         surfFD.SourceNodeNum = i;
    2264              :                     }
    2265              : 
    2266      4175014 :                     if (construct.SourceSinkPresent && (Lay == construct.TempAfterLayer)) {
    2267            0 :                         state.dataHeatBalSurf->SurfTempUserLoc(SurfNum) = TDT_i; // Transfer node temp to DataHeatBalSurface module
    2268              :                     }
    2269              : 
    2270              :                 } // End of R-layer and Regular check
    2271              : 
    2272      4175014 :                 TDT(i) = TDT_i;
    2273              :             }
    2274              : 
    2275              :         } // End of the CondFD if block
    2276      4175014 :     }
    2277              : 
    2278      2201492 :     void InteriorBCEqns(EnergyPlusData &state,
    2279              :                         int const Delt,                               // Time Increment
    2280              :                         int const i,                                  // Node Index
    2281              :                         int const Lay,                                // Layer Number for Construction
    2282              :                         int const SurfNum,                            // Surface number
    2283              :                         [[maybe_unused]] Array1D<Real64> const &T,    // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF (Old).
    2284              :                         [[maybe_unused]] Array1D<Real64> &TT,         // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF (New).
    2285              :                         [[maybe_unused]] Array1D<Real64> const &Rhov, // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    2286              :                         [[maybe_unused]] Array1D<Real64> &RhoT,       // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    2287              :                         [[maybe_unused]] Array1D<Real64> &RH,         // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    2288              :                         Array1D<Real64> const &TD,                    // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    2289              :                         Array1D<Real64> &TDT,                         // INSIDE SURFACE TEMPERATURE OF EACH HEAT TRANSFER SURF.
    2290              :                         Array1D<Real64> &EnthOld,                     // Old Nodal enthalpy
    2291              :                         Array1D<Real64> &EnthNew,                     // New Nodal enthalpy
    2292              :                         Array1D<Real64> &TDreport                     // Temperature value from previous HeatSurfaceHeatManager iteration's value
    2293              :     )
    2294              :     {
    2295              :         // SUBROUTINE INFORMATION:
    2296              :         //       AUTHOR         Richard Liesen
    2297              :         //       DATE WRITTEN   November, 2003
    2298              :         //       MODIFIED       B. Griffith, P. Tabares, May 2011, add first order fully implicit, bug fixes, cleanup
    2299              :         //                      November 2011 P. Tabares fixed problems with adiabatic walls/massless walls
    2300              :         //                      November 2011 P. Tabares fixed problems PCM stability problems
    2301              :         //       RE-ENGINEERED  C. O. Pedersen 2006
    2302              : 
    2303              :         // PURPOSE OF THIS SUBROUTINE:
    2304              :         // Calculate the heat transfer at the node on the surfaces inside face (facing zone)
    2305              : 
    2306      2201492 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    2307              : 
    2308      2201492 :         auto const &surface(state.dataSurface->Surface(SurfNum));
    2309      2201492 :         auto &surfFD = s_hbfd->SurfaceFD(SurfNum);
    2310      2201492 :         int const ConstrNum(surface.Construction);
    2311              : 
    2312              :         // Set the internal conditions to local variables
    2313              :         Real64 const NetLWRadToSurfFD(
    2314      2201492 :             state.dataHeatBalSurf->SurfQdotRadNetLWInPerArea(SurfNum)); // Net interior long wavelength radiation to surface from other surfaces
    2315      2201492 :         Real64 const QRadSWInFD(state.dataHeatBalSurf->SurfOpaqQRadSWInAbs(SurfNum)); // Short wave radiation absorbed on inside of opaque surface
    2316              :         Real64 const SurfQdotRadHVACInPerAreaFD(
    2317      2201492 :             state.dataHeatBalSurf->SurfQdotRadHVACInPerArea(SurfNum));                        // Total current radiant heat flux at a surface
    2318      2201492 :         Real64 const QRadThermInFD(state.dataHeatBal->SurfQdotRadIntGainsInPerArea(SurfNum)); // Thermal radiation absorbed on inside surfaces
    2319              : 
    2320              :         // Boundary Conditions from Simulation for Interior
    2321      2201492 :         Real64 hconvi(state.dataMstBal->HConvInFD(SurfNum));
    2322              : 
    2323      2201492 :         Real64 const Tia(state.dataZoneTempPredictorCorrector->zoneHeatBalance(surface.Zone).MAT);
    2324              : 
    2325              :         //++++++++++++++++++++++++++++++++++++++++++++++++++++++
    2326              :         //    Do all the nodes in the surface   Else will switch to SigmaR,SigmaC
    2327      2201492 :         Real64 TDT_i(TDT(i));
    2328      2201492 :         Real64 const QFac(NetLWRadToSurfFD + QRadSWInFD + QRadThermInFD + SurfQdotRadHVACInPerAreaFD);
    2329      2201492 :         if (surface.HeatTransferAlgorithm == DataSurfaces::HeatTransferModel::CondFD) {
    2330      2201492 :             int const MatLay(state.dataConstruction->Construct(ConstrNum).LayerPoint(Lay));
    2331      2201492 :             auto *mat = state.dataMaterial->materials(MatLay);
    2332      2201492 :             auto const &matFD(s_hbfd->MaterialFD(MatLay));
    2333      2201492 :             auto const &condActuator = surfFD.condMaterialActuators(Lay);
    2334      2201492 :             auto const &specHeatActuator = surfFD.specHeatMaterialActuators(Lay);
    2335              : 
    2336              :             // Calculate the Dry Heat Conduction Equation
    2337              : 
    2338      2201492 :             if (mat->ROnly || mat->group == Material::Group::AirGap) { // R Layer or Air Layer
    2339              :                 // Use algebraic equation for TDT based on R
    2340       299648 :                 Real64 constexpr IterDampConst(
    2341              :                     5.0); // Damping constant for inside surface temperature iterations. Only used for massless (R-value only) Walls
    2342       299648 :                 Real64 const Rlayer(mat->Resistance);
    2343       299648 :                 if ((i == 1) && (surface.ExtBoundCond > 0)) { // this is for an adiabatic partition
    2344            0 :                     TDT_i = (TDT(i + 1) + (QFac + hconvi * Tia + TDreport(i) * IterDampConst) * Rlayer) / (1.0 + (hconvi + IterDampConst) * Rlayer);
    2345              :                 } else { // regular wall
    2346       299648 :                     TDT_i = (TDT(i - 1) + (QFac + hconvi * Tia + TDreport(i) * IterDampConst) * Rlayer) / (1.0 + (hconvi + IterDampConst) * Rlayer);
    2347              :                 }
    2348       299648 :                 surfFD.CpDelXRhoS1(i) = 0.0; // Save this for computing node flux values - rlayer has no capacitance
    2349       299648 :                 surfFD.CpDelXRhoS2(i) = 0.0; // Inside face  does not have an inner half node
    2350              : 
    2351       299648 :             } else { //  Regular or PCM
    2352      1901844 :                 Real64 const TDT_m(TDT(i - 1));
    2353              : 
    2354              :                 // Set Thermal Conductivity. Can be constant, simple linear temp dep or multiple linear segment temp function dep.
    2355      1901844 :                 auto const &matFD_TempCond(matFD.TempCond);
    2356      1901844 :                 assert(matFD_TempCond.u2() >= 3);
    2357      1901844 :                 Real64 const lTC(matFD_TempCond.index(2, 1));
    2358              :                 Real64 kt;
    2359      1901844 :                 if (matFD_TempCond[lTC] + matFD_TempCond[lTC + 1] + matFD_TempCond[lTC + 2] >= 0.0) { // Multiple Linear Segment Function
    2360              :                     // Use average of surface and first node temp for determining k
    2361            0 :                     kt = terpld(matFD_TempCond, (TDT_i + TDT_m) / 2.0, 1, 2); // 1: Temperature, 2: Thermal conductivity
    2362              :                 } else {
    2363      1901844 :                     kt = mat->Conductivity;      // 20C base conductivity
    2364      1901844 :                     Real64 const kt1(matFD.tk1); // linear coefficient (normally zero)
    2365      1901844 :                     if (kt1 != 0.0) kt = +kt1 * ((TDT_i + TDT_m) / 2.0 - 20.0);
    2366              :                 }
    2367              : 
    2368      1901844 :                 Real64 RhoS(mat->Density);
    2369      1901844 :                 Real64 const TD_i(TD(i));
    2370      1901844 :                 Real64 const Cpo(mat->SpecHeat);
    2371      1901844 :                 Real64 Cp(Cpo); // Will be changed if PCM
    2372      1901844 :                 auto const &matFD_TempEnth(matFD.TempEnth);
    2373      1901844 :                 assert(matFD_TempEnth.u2() >= 3);
    2374      1901844 :                 Real64 const lTE(matFD_TempEnth.index(2, 1));
    2375      1901844 :                 if (mat->hasPCM) {
    2376            0 :                     auto *matPC = dynamic_cast<Material::MaterialPhaseChange *>(mat);
    2377            0 :                     adjustPropertiesForPhaseChange(state, i, SurfNum, matPC, TD_i, TDT_i, Cp, RhoS, kt);
    2378      1901844 :                 } else if (matFD_TempEnth[lTE] + matFD_TempEnth[lTE + 1] + matFD_TempEnth[lTE + 2] >=
    2379              :                            0.0) {                                     // Phase change material: Use TempEnth data
    2380            0 :                     EnthOld(i) = terpld(matFD_TempEnth, TD_i, 1, 2);  // 1: Temperature, 2: Enthalpy
    2381            0 :                     EnthNew(i) = terpld(matFD_TempEnth, TDT_i, 1, 2); // 1: Temperature, 2: Enthalpy
    2382            0 :                     if ((std::abs(EnthNew(i) - EnthOld(i)) > smalldiff) && (std::abs(TDT_i - TD_i) > smalldiff)) {
    2383            0 :                         Cp = max(Cpo, (EnthNew(i) - EnthOld(i)) / (TDT_i - TD_i));
    2384              :                     }
    2385              :                 } // Phase change material check
    2386              : 
    2387              :                 // EMS Conductivity Override
    2388      1901844 :                 if (condActuator.isActuated) {
    2389            0 :                     kt = condActuator.actuatedValue;
    2390              :                 }
    2391              : 
    2392              :                 // EMS Specific Heat Override
    2393      1901844 :                 if (specHeatActuator.isActuated) {
    2394            0 :                     Cp = specHeatActuator.actuatedValue;
    2395              :                 }
    2396              : 
    2397              :                 // Update EMS internal variables
    2398      1901844 :                 surfFD.condNodeReport(i) = kt;
    2399      1901844 :                 surfFD.specHeatNodeReport(i) = Cp;
    2400              : 
    2401      1901844 :                 Real64 const DelX(s_hbfd->ConstructFD(ConstrNum).DelX(Lay));
    2402      1901844 :                 Real64 const Delt_DelX(Delt * DelX);
    2403      1901844 :                 Real64 const Two_Delt_DelX(2.0 * Delt_DelX);
    2404      1901844 :                 Real64 const Delt_kt(Delt * kt);
    2405      1901844 :                 Real64 const Cp_DelX2_RhoS(Cp * pow_2(DelX) * RhoS);
    2406      1901844 :                 if ((surface.ExtBoundCond > 0) && (i == 1)) {                                  // this is for an adiabatic or interzone partition
    2407            0 :                     if (s_hbfd->CondFDSchemeType == CondFDScheme::CrankNicholsonSecondOrder) { // Adams-Moulton second order
    2408            0 :                         TDT_i = (Two_Delt_DelX * (QFac + hconvi * Tia) + (Cp_DelX2_RhoS - Delt_DelX * hconvi - Delt_kt) * TD_i +
    2409            0 :                                  Delt_kt * (TD(i + 1) + TDT(i + 1))) /
    2410            0 :                                 (Delt_DelX * hconvi + Delt_kt + Cp_DelX2_RhoS);
    2411            0 :                     } else if (s_hbfd->CondFDSchemeType == CondFDScheme::FullyImplicitFirstOrder) { // Adams-Moulton First order
    2412            0 :                         Real64 const Two_Delt_kt(2.0 * Delt_kt);
    2413            0 :                         TDT_i = (Two_Delt_DelX * (QFac + hconvi * Tia) + Cp_DelX2_RhoS * TD_i + Two_Delt_kt * TDT(i + 1)) /
    2414            0 :                                 (Two_Delt_DelX * hconvi + Two_Delt_kt + Cp_DelX2_RhoS);
    2415              :                     }
    2416            0 :                 } else { // for regular or interzone walls
    2417      1901844 :                     if (s_hbfd->CondFDSchemeType == CondFDScheme::CrankNicholsonSecondOrder) {
    2418            0 :                         TDT_i = (Two_Delt_DelX * (QFac + hconvi * Tia) + (Cp_DelX2_RhoS - Delt_DelX * hconvi - Delt_kt) * TD_i +
    2419            0 :                                  Delt_kt * (TD(i - 1) + TDT_m)) /
    2420            0 :                                 (Delt_DelX * hconvi + Delt_kt + Cp_DelX2_RhoS);
    2421      1901844 :                     } else if (s_hbfd->CondFDSchemeType == CondFDScheme::FullyImplicitFirstOrder) {
    2422      1901844 :                         Real64 const Two_Delt_kt(2.0 * Delt_kt);
    2423      1901844 :                         TDT_i = (Two_Delt_DelX * (QFac + hconvi * Tia) + Cp_DelX2_RhoS * TD_i + Two_Delt_kt * TDT_m) /
    2424      1901844 :                                 (Two_Delt_DelX * hconvi + Two_Delt_kt + Cp_DelX2_RhoS);
    2425              :                     }
    2426              :                 }
    2427      1901844 :                 surfFD.CpDelXRhoS1(i) = (Cp * DelX * RhoS) / 2.0; // Save this for computing node flux values
    2428      1901844 :                 surfFD.CpDelXRhoS2(i) = 0.0;                      // Inside face  does not have an inner half node
    2429              : 
    2430              :             } // Regular or R layer
    2431              : 
    2432      2201492 :             CheckFDNodeTempLimits(state, SurfNum, i, TDT_i);
    2433              : 
    2434      2201492 :             TDT(i) = TDT_i;
    2435              : 
    2436              :         } //  End of Regular node or SigmaR SigmaC option
    2437              : 
    2438      2201492 :         Real64 const QNetSurfInside(-(QFac + hconvi * (-TDT_i + Tia)));
    2439              :         //  Pass inside conduction Flux [W/m2] to DataHeatBalanceSurface array
    2440      2201492 :         state.dataHeatBalSurf->SurfOpaqInsFaceCondFlux(SurfNum) = QNetSurfInside;
    2441      2201492 :     }
    2442              : 
    2443              :     // todo - function not used
    2444            0 :     void CheckFDSurfaceTempLimits(EnergyPlusData &state,
    2445              :                                   int const SurfNum,            // surface number
    2446              :                                   Real64 const CheckTemperature // calculated temperature, not reset
    2447              :     )
    2448              :     {
    2449              : 
    2450              :         // SUBROUTINE INFORMATION:
    2451              :         //       AUTHOR         Linda Lawrie
    2452              :         //       DATE WRITTEN   August 2012
    2453              : 
    2454              :         // PURPOSE OF THIS SUBROUTINE:
    2455              :         // Provides a single entry point for checking surface temperature limits as well as
    2456              :         // setting up for recurring errors if too low or too high.
    2457              : 
    2458              :         // METHODOLOGY EMPLOYED:
    2459              :         // Use methodology similar to HBSurfaceManager
    2460            0 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    2461              : 
    2462            0 :         int ZoneNum = state.dataSurface->Surface(SurfNum).Zone;
    2463              : 
    2464            0 :         if (state.dataGlobal->WarmupFlag) ++s_hbfd->WarmupSurfTemp;
    2465            0 :         if (!state.dataGlobal->WarmupFlag || s_hbfd->WarmupSurfTemp > 10 || state.dataGlobal->DisplayExtraWarnings) {
    2466            0 :             if (CheckTemperature < DataHeatBalSurface::MinSurfaceTempLimit) {
    2467            0 :                 if (state.dataSurface->SurfLowTempErrCount(SurfNum) == 0) {
    2468            0 :                     ShowSevereMessage(state,
    2469            0 :                                       format("Temperature (low) out of bounds [{:.2R}] for zone=\"{}\", for surface=\"{}\"",
    2470              :                                              CheckTemperature,
    2471            0 :                                              state.dataHeatBal->Zone(ZoneNum).Name,
    2472            0 :                                              state.dataSurface->Surface(SurfNum).Name));
    2473            0 :                     ShowContinueErrorTimeStamp(state, "");
    2474            0 :                     if (!state.dataHeatBal->Zone(ZoneNum).TempOutOfBoundsReported) {
    2475            0 :                         ShowContinueError(state, format("Zone=\"{}\", Diagnostic Details:", state.dataHeatBal->Zone(ZoneNum).Name));
    2476            0 :                         if (state.dataHeatBal->Zone(ZoneNum).FloorArea > 0.0) {
    2477            0 :                             ShowContinueError(
    2478              :                                 state,
    2479            0 :                                 format("...Internal Heat Gain [{:.3R}] W/m2",
    2480            0 :                                        state.dataHeatBal->Zone(ZoneNum).InternalHeatGains / state.dataHeatBal->Zone(ZoneNum).FloorArea));
    2481              :                         } else {
    2482            0 :                             ShowContinueError(
    2483            0 :                                 state, format("...Internal Heat Gain (no floor) [{:.3R}] W", state.dataHeatBal->Zone(ZoneNum).InternalHeatGains));
    2484              :                         }
    2485            0 :                         if (state.afn->simulation_control.type == AirflowNetwork::ControlType::NoMultizoneOrDistribution) {
    2486            0 :                             ShowContinueError(state,
    2487            0 :                                               format("...Infiltration/Ventilation [{:.3R}] m3/s", state.dataHeatBal->Zone(ZoneNum).NominalInfilVent));
    2488            0 :                             ShowContinueError(state, format("...Mixing/Cross Mixing [{:.3R}] m3/s", state.dataHeatBal->Zone(ZoneNum).NominalMixing));
    2489              :                         } else {
    2490            0 :                             ShowContinueError(state, "...Airflow Network Simulation: Nominal Infiltration/Ventilation/Mixing not available.");
    2491              :                         }
    2492            0 :                         if (state.dataHeatBal->Zone(ZoneNum).IsControlled) {
    2493            0 :                             ShowContinueError(state, "...Zone is part of HVAC controlled system.");
    2494              :                         } else {
    2495            0 :                             ShowContinueError(state, "...Zone is not part of HVAC controlled system.");
    2496              :                         }
    2497            0 :                         state.dataHeatBal->Zone(ZoneNum).TempOutOfBoundsReported = true;
    2498              :                     }
    2499            0 :                     ShowRecurringSevereErrorAtEnd(state,
    2500            0 :                                                   "Temperature (low) out of bounds for zone=" + state.dataHeatBal->Zone(ZoneNum).Name +
    2501            0 :                                                       " for surface=" + state.dataSurface->Surface(SurfNum).Name,
    2502            0 :                                                   state.dataSurface->SurfLowTempErrCount(SurfNum),
    2503              :                                                   CheckTemperature,
    2504              :                                                   CheckTemperature,
    2505              :                                                   _,
    2506              :                                                   "C",
    2507              :                                                   "C");
    2508              :                 } else {
    2509            0 :                     ShowRecurringSevereErrorAtEnd(state,
    2510            0 :                                                   "Temperature (low) out of bounds for zone=" + state.dataHeatBal->Zone(ZoneNum).Name +
    2511            0 :                                                       " for surface=" + state.dataSurface->Surface(SurfNum).Name,
    2512            0 :                                                   state.dataSurface->SurfLowTempErrCount(SurfNum),
    2513              :                                                   CheckTemperature,
    2514              :                                                   CheckTemperature,
    2515              :                                                   _,
    2516              :                                                   "C",
    2517              :                                                   "C");
    2518              :                 }
    2519              :             } else {
    2520            0 :                 if (state.dataSurface->SurfHighTempErrCount(SurfNum) == 0) {
    2521            0 :                     ShowSevereMessage(state,
    2522            0 :                                       format("Temperature (high) out of bounds ({:.2R}] for zone=\"{}\", for surface=\"{}\"",
    2523              :                                              CheckTemperature,
    2524            0 :                                              state.dataHeatBal->Zone(ZoneNum).Name,
    2525            0 :                                              state.dataSurface->Surface(SurfNum).Name));
    2526            0 :                     ShowContinueErrorTimeStamp(state, "");
    2527            0 :                     if (!state.dataHeatBal->Zone(ZoneNum).TempOutOfBoundsReported) {
    2528            0 :                         ShowContinueError(state, format("Zone=\"{}\", Diagnostic Details:", state.dataHeatBal->Zone(ZoneNum).Name));
    2529            0 :                         if (state.dataHeatBal->Zone(ZoneNum).FloorArea > 0.0) {
    2530            0 :                             ShowContinueError(
    2531              :                                 state,
    2532            0 :                                 format("...Internal Heat Gain [{:.3R}] W/m2",
    2533            0 :                                        state.dataHeatBal->Zone(ZoneNum).InternalHeatGains / state.dataHeatBal->Zone(ZoneNum).FloorArea));
    2534              :                         } else {
    2535            0 :                             ShowContinueError(
    2536            0 :                                 state, format("...Internal Heat Gain (no floor) [{:.3R}] W", state.dataHeatBal->Zone(ZoneNum).InternalHeatGains));
    2537              :                         }
    2538            0 :                         if (state.afn->simulation_control.type == AirflowNetwork::ControlType::NoMultizoneOrDistribution) {
    2539            0 :                             ShowContinueError(state,
    2540            0 :                                               format("...Infiltration/Ventilation [{:.3R}] m3/s", state.dataHeatBal->Zone(ZoneNum).NominalInfilVent));
    2541            0 :                             ShowContinueError(state, format("...Mixing/Cross Mixing [{:.3R}] m3/s", state.dataHeatBal->Zone(ZoneNum).NominalMixing));
    2542              :                         } else {
    2543            0 :                             ShowContinueError(state, "...Airflow Network Simulation: Nominal Infiltration/Ventilation/Mixing not available.");
    2544              :                         }
    2545            0 :                         if (state.dataHeatBal->Zone(ZoneNum).IsControlled) {
    2546            0 :                             ShowContinueError(state, "...Zone is part of HVAC controlled system.");
    2547              :                         } else {
    2548            0 :                             ShowContinueError(state, "...Zone is not part of HVAC controlled system.");
    2549              :                         }
    2550            0 :                         state.dataHeatBal->Zone(ZoneNum).TempOutOfBoundsReported = true;
    2551              :                     }
    2552            0 :                     ShowRecurringSevereErrorAtEnd(state,
    2553            0 :                                                   "Temperature (high) out of bounds for zone=" + state.dataHeatBal->Zone(ZoneNum).Name +
    2554            0 :                                                       " for surface=" + state.dataSurface->Surface(SurfNum).Name,
    2555            0 :                                                   state.dataSurface->SurfHighTempErrCount(SurfNum),
    2556              :                                                   CheckTemperature,
    2557              :                                                   CheckTemperature,
    2558              :                                                   _,
    2559              :                                                   "C",
    2560              :                                                   "C");
    2561              :                 } else {
    2562            0 :                     ShowRecurringSevereErrorAtEnd(state,
    2563            0 :                                                   "Temperature (high) out of bounds for zone=" + state.dataHeatBal->Zone(ZoneNum).Name +
    2564            0 :                                                       " for surface=" + state.dataSurface->Surface(SurfNum).Name,
    2565            0 :                                                   state.dataSurface->SurfHighTempErrCount(SurfNum),
    2566              :                                                   CheckTemperature,
    2567              :                                                   CheckTemperature,
    2568              :                                                   _,
    2569              :                                                   "C",
    2570              :                                                   "C");
    2571              :                 }
    2572              :             }
    2573              :         }
    2574            0 :     }
    2575              : 
    2576     11097680 :     void CheckFDNodeTempLimits(EnergyPlusData &state,
    2577              :                                int surfNum,     // surface number
    2578              :                                int nodeNum,     // node number
    2579              :                                Real64 &nodeTemp // calculated temperature, not reset
    2580              :     )
    2581              :     {
    2582     11097680 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    2583              : 
    2584     11097680 :         auto &surfFD = s_hbfd->SurfaceFD(surfNum);
    2585     11097680 :         auto &surfName = state.dataSurface->Surface(surfNum).Name;
    2586     11097680 :         auto &minTempLimit = DataHeatBalSurface::MinSurfaceTempLimit;
    2587     11097680 :         auto &maxTempLimit = state.dataHeatBalSurf->MaxSurfaceTempLimit;
    2588     11097680 :         if (nodeTemp < minTempLimit) {
    2589            4 :             if (surfFD.indexNodeMinTempLimit == 0) {
    2590            4 :                 ShowSevereMessage(state,
    2591            4 :                                   format("Node temperature (low) out of bounds [{:.2R}] for surface={}, node={}", nodeTemp, surfName, nodeNum));
    2592            4 :                 ShowContinueErrorTimeStamp(state, "");
    2593            2 :                 ShowContinueError(state, format("Value has been reset to the lower limit value of {:.2R}.", minTempLimit));
    2594              :             }
    2595           28 :             ShowRecurringSevereErrorAtEnd(
    2596            8 :                 state, "Node temperature (low) out of bounds for surface=" + surfName, surfFD.indexNodeMinTempLimit, nodeTemp, nodeTemp, _, "C", "C");
    2597            4 :             nodeTemp = minTempLimit;
    2598     11097676 :         } else if (nodeTemp > maxTempLimit) {
    2599            4 :             if (surfFD.indexNodeMaxTempLimit == 0) {
    2600            4 :                 ShowSevereMessage(state,
    2601            4 :                                   format("Node temperature (high) out of bounds [{:.2R}] for surface={}, node={}", nodeTemp, surfName, nodeNum));
    2602            4 :                 ShowContinueErrorTimeStamp(state, "");
    2603            2 :                 ShowContinueError(state, format("Value has been reset to the upper limit value of {:.2R}.", maxTempLimit));
    2604              :             }
    2605           28 :             ShowRecurringSevereErrorAtEnd(state,
    2606            4 :                                           "Node temperature (high) out of bounds for surface=" + surfName,
    2607            4 :                                           surfFD.indexNodeMaxTempLimit,
    2608              :                                           nodeTemp,
    2609              :                                           nodeTemp,
    2610              :                                           _,
    2611              :                                           "C",
    2612              :                                           "C");
    2613            4 :             nodeTemp = maxTempLimit;
    2614              :         }
    2615     11097680 :     }
    2616              : 
    2617       599176 :     void CalcNodeHeatFlux(EnergyPlusData &state,
    2618              :                           int const SurfNum, // surface number
    2619              :                           int const TotNodes // number of nodes in surface
    2620              :     )
    2621              :     {
    2622              : 
    2623              :         // SUBROUTINE INFORMATION:
    2624              :         //       AUTHOR         M.J. Witte
    2625              :         //       DATE WRITTEN   Sept-Nov 2015
    2626              :         // PURPOSE OF THIS SUBROUTINE:
    2627              :         // Calculate flux at each condFD node
    2628              : 
    2629       599176 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    2630       599176 :         auto &surfFD = s_hbfd->SurfaceFD(SurfNum);
    2631              : 
    2632              :         // SurfaceFD.QDreport( n ) is the flux at node n
    2633              :         // When this is called TDT( NodeNum ) is the new node temp and TDpriortimestep( NodeNum ) holds the previous node temp
    2634              :         // For the TDT and TDpriortimestep arrays, Node 1 is the outside face, and Node TotNodes+1 is the inside face
    2635              : 
    2636              :         // Last node is always the surface inside face.  Start calculations here because the outside face is not defined for all surfaces.
    2637              :         // Note that TotNodes is the number of nodes in the surface including the outside face node, but not the inside face node
    2638              :         // so the arrays are all allocated to Totodes+1
    2639              : 
    2640              :         // Heat flux at the inside face node (TotNodes+1)
    2641       599176 :         surfFD.QDreport(TotNodes + 1) = state.dataHeatBalSurf->SurfOpaqInsFaceCondFlux(SurfNum);
    2642              : 
    2643              :         // Heat flux for remaining nodes.
    2644      3495190 :         for (int node = TotNodes; node >= 1; --node) {
    2645              :             // Start with inside face (above) and work outward, positive value is flowing towards the inside face
    2646              :             // CpDelXRhoS1 is outer half-node heat capacity, CpDelXRhoS2 is inner half node heat capacity
    2647              :             Real64 interNodeFlux; // heat flux at the plane between node and node+1 [W/m2]
    2648              :             Real64 sourceFlux;    // Internal source flux [W/m2]
    2649      2896014 :             if (surfFD.SourceNodeNum == node) {
    2650            0 :                 sourceFlux = surfFD.QSource;
    2651              :             } else {
    2652      2896014 :                 sourceFlux = 0.0;
    2653              :             }
    2654      2896014 :             interNodeFlux = surfFD.QDreport(node + 1) + surfFD.CpDelXRhoS1(node + 1) * (surfFD.TDT(node + 1) - surfFD.TDpriortimestep(node + 1)) /
    2655      2896014 :                                                             state.dataGlobal->TimeStepZoneSec;
    2656      2896014 :             surfFD.QDreport(node) = interNodeFlux - sourceFlux +
    2657      2896014 :                                     surfFD.CpDelXRhoS2(node) * (surfFD.TDT(node) - surfFD.TDpriortimestep(node)) / state.dataGlobal->TimeStepZoneSec;
    2658              :         }
    2659       599176 :         if (state.dataEnvrn->IsRain)
    2660            2 :             state.dataHeatBalSurf->SurfOpaqOutFaceCondFlux(SurfNum) = -surfFD.QDreport(1); // Update the outside flux if it is raining
    2661       599176 :     }
    2662              : 
    2663            1 :     void adjustPropertiesForPhaseChange(EnergyPlusData &state,
    2664              :                                         int finiteDifferenceLayerIndex,
    2665              :                                         int surfNum,
    2666              :                                         Material::MaterialPhaseChange *mat,
    2667              :                                         Real64 temperaturePrevious,
    2668              :                                         Real64 temperatureUpdated,
    2669              :                                         Real64 &updatedSpecificHeat,
    2670              :                                         Real64 &updatedDensity,
    2671              :                                         Real64 &updatedThermalConductivity)
    2672              :     {
    2673            1 :         auto &s_hbfd = state.dataHeatBalFiniteDiffMgr;
    2674            1 :         auto &surfFD = s_hbfd->SurfaceFD(surfNum);
    2675              : 
    2676            1 :         updatedSpecificHeat = mat->getCurrentSpecificHeat(temperaturePrevious,
    2677              :                                                           temperatureUpdated,
    2678            1 :                                                           surfFD.PhaseChangeTemperatureReverse(finiteDifferenceLayerIndex),
    2679            1 :                                                           surfFD.PhaseChangeStateOld(finiteDifferenceLayerIndex),
    2680              :                                                           surfFD.PhaseChangeState(finiteDifferenceLayerIndex));
    2681              : 
    2682            1 :         surfFD.PhaseChangeStateRep(finiteDifferenceLayerIndex) = Material::phaseInts[(int)surfFD.PhaseChangeState(finiteDifferenceLayerIndex)];
    2683            1 :         updatedDensity = mat->getDensity(temperaturePrevious);
    2684            1 :         updatedThermalConductivity = mat->getConductivity(temperatureUpdated);
    2685            1 :     }
    2686              : 
    2687           20 :     bool findAnySurfacesUsingConstructionAndCondFD(EnergyPlusData const &state, int const constructionNum)
    2688              :     {
    2689           71 :         for (auto const &thisSurface : state.dataSurface->Surface) {
    2690           70 :             if (thisSurface.Construction == constructionNum) {
    2691           20 :                 if (thisSurface.HeatTransferAlgorithm == DataSurfaces::HeatTransferModel::CondFD) return true;
    2692              :             }
    2693              :         }
    2694            1 :         return false;
    2695              :     }
    2696              : 
    2697              : } // namespace HeatBalFiniteDiffManager
    2698              : 
    2699              : } // namespace EnergyPlus
        

Generated by: LCOV version 2.0-1