LCOV - code coverage report
Current view: top level - EnergyPlus/Plant - Loop.cc (source / functions) Coverage Total Hit
Test: lcov.output.filtered Lines: 63.0 % 81 51
Test Date: 2025-05-22 16:09:37 Functions: 100.0 % 3 3

            Line data    Source code
       1              : // EnergyPlus, Copyright (c) 1996-2025, The Board of Trustees of the University of Illinois,
       2              : // The Regents of the University of California, through Lawrence Berkeley National Laboratory
       3              : // (subject to receipt of any required approvals from the U.S. Dept. of Energy), Oak Ridge
       4              : // National Laboratory, managed by UT-Battelle, Alliance for Sustainable Energy, LLC, and other
       5              : // contributors. All rights reserved.
       6              : //
       7              : // NOTICE: This Software was developed under funding from the U.S. Department of Energy and the
       8              : // U.S. Government consequently retains certain rights. As such, the U.S. Government has been
       9              : // granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
      10              : // worldwide license in the Software to reproduce, distribute copies to the public, prepare
      11              : // derivative works, and perform publicly and display publicly, and to permit others to do so.
      12              : //
      13              : // Redistribution and use in source and binary forms, with or without modification, are permitted
      14              : // provided that the following conditions are met:
      15              : //
      16              : // (1) Redistributions of source code must retain the above copyright notice, this list of
      17              : //     conditions and the following disclaimer.
      18              : //
      19              : // (2) Redistributions in binary form must reproduce the above copyright notice, this list of
      20              : //     conditions and the following disclaimer in the documentation and/or other materials
      21              : //     provided with the distribution.
      22              : //
      23              : // (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
      24              : //     the University of Illinois, U.S. Dept. of Energy nor the names of its contributors may be
      25              : //     used to endorse or promote products derived from this software without specific prior
      26              : //     written permission.
      27              : //
      28              : // (4) Use of EnergyPlus(TM) Name. If Licensee (i) distributes the software in stand-alone form
      29              : //     without changes from the version obtained under this License, or (ii) Licensee makes a
      30              : //     reference solely to the software portion of its product, Licensee must refer to the
      31              : //     software as "EnergyPlus version X" software, where "X" is the version number Licensee
      32              : //     obtained under this License and may not use a different name for the software. Except as
      33              : //     specifically required in this Section (4), Licensee shall not use in a company name, a
      34              : //     product name, in advertising, publicity, or other promotional activities any name, trade
      35              : //     name, trademark, logo, or other designation of "EnergyPlus", "E+", "e+" or confusingly
      36              : //     similar designation, without the U.S. Department of Energy's prior written consent.
      37              : //
      38              : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
      39              : // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
      40              : // AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
      41              : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
      42              : // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
      43              : // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      44              : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
      45              : // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
      46              : // POSSIBILITY OF SUCH DAMAGE.
      47              : 
      48              : #include <EnergyPlus/Data/EnergyPlusData.hh>
      49              : #include <EnergyPlus/DataBranchAirLoopPlant.hh>
      50              : #include <EnergyPlus/FluidProperties.hh>
      51              : #include <EnergyPlus/General.hh>
      52              : #include <EnergyPlus/Plant/DataPlant.hh>
      53              : #include <EnergyPlus/Plant/Loop.hh>
      54              : #include <EnergyPlus/UtilityRoutines.hh>
      55              : 
      56              : namespace EnergyPlus::DataPlant {
      57              : 
      58        88208 : void PlantLoopData::UpdateLoopSideReportVars(EnergyPlusData &state,
      59              :                                              Real64 const OtherSideDemand,   // This is the 'other side' demand, based on other side flow
      60              :                                              Real64 const LocalRemLoopDemand // Unmet Demand after equipment has been simulated (report variable)
      61              : )
      62              : {
      63              : 
      64              :     // SUBROUTINE INFORMATION:
      65              :     //       AUTHOR         Dan Fisher
      66              :     //       DATE WRITTEN   July 1998
      67              :     //       MODIFIED       Aug 2010 Edwin Lee -- add per LoopSide variable support
      68              :     //       RE-ENGINEERED  na
      69              : 
      70        88208 :     this->InletNodeFlowrate = state.dataLoopNodes->Node(this->LoopSide(DataPlant::LoopSideLocation::Supply).NodeNumIn).MassFlowRate;
      71        88208 :     this->InletNodeTemperature = state.dataLoopNodes->Node(this->LoopSide(DataPlant::LoopSideLocation::Supply).NodeNumIn).Temp;
      72        88208 :     this->OutletNodeFlowrate = state.dataLoopNodes->Node(this->LoopSide(DataPlant::LoopSideLocation::Supply).NodeNumOut).MassFlowRate;
      73        88208 :     this->OutletNodeTemperature = state.dataLoopNodes->Node(this->LoopSide(DataPlant::LoopSideLocation::Supply).NodeNumOut).Temp;
      74              : 
      75              :     // In the baseline code, only reported supply side demand. so putting in "SupplySide" IF block for now but might expand later
      76        88208 :     if (OtherSideDemand < 0.0) {
      77        21773 :         this->CoolingDemand = std::abs(OtherSideDemand);
      78        21773 :         this->HeatingDemand = 0.0;
      79        21773 :         this->DemandNotDispatched = -LocalRemLoopDemand; //  Setting sign based on old logic for now
      80              :     } else {
      81        66435 :         this->HeatingDemand = OtherSideDemand;
      82        66435 :         this->CoolingDemand = 0.0;
      83        66435 :         this->DemandNotDispatched = LocalRemLoopDemand; //  Setting sign based on old logic for now
      84              :     }
      85              : 
      86        88208 :     this->CalcUnmetPlantDemand(state);
      87        88208 : }
      88              : 
      89        88208 : void PlantLoopData::CalcUnmetPlantDemand(EnergyPlusData &state)
      90              : {
      91              : 
      92              :     // SUBROUTINE INFORMATION:
      93              :     //       AUTHOR         Brent Griffith
      94              :     //       DATE WRITTEN   June 2011
      95              :     //       MODIFIED       na
      96              :     //       RE-ENGINEERED  na
      97              : 
      98              :     // PURPOSE OF THIS SUBROUTINE:
      99              :     // determine the magnitude of unmet plant loads after the half loop simulation is done
     100              : 
     101              :     // METHODOLOGY EMPLOYED:
     102              :     // using the loop setpoint node, look at target vs current and
     103              :     // calculate a demand based on mass flow times specific heat times delta T
     104              : 
     105              :     // Using/Aliasing
     106              :     using DataPlant::LoopDemandTol;
     107              : 
     108              :     // SUBROUTINE PARAMETER DEFINITIONS:
     109              :     static constexpr std::string_view RoutineName("PlantLoopSolver::EvaluateLoopSetPointLoad");
     110              :     static constexpr std::string_view RoutineNameAlt("PlantSupplySide:EvaluateLoopSetPointLoad");
     111              : 
     112              :     //~ General variables
     113              :     Real64 MassFlowRate;
     114              :     Real64 TargetTemp;
     115              :     Real64 LoopSetPointTemperature;
     116              :     Real64 LoopSetPointTemperatureHi;
     117              :     Real64 LoopSetPointTemperatureLo;
     118              :     Real64 LoadToHeatingSetPoint;
     119              :     Real64 LoadToCoolingSetPoint;
     120              :     Real64 DeltaTemp;
     121              :     Real64 Cp;
     122              :     Real64 EnthalpySteamSatVapor;  // Enthalpy of saturated vapor
     123              :     Real64 EnthalpySteamSatLiquid; // Enthalpy of saturated liquid
     124              :     Real64 LatentHeatSteam;        // Latent heat of steam
     125              :     Real64 LoadToLoopSetPoint;
     126              : 
     127              :     // Initialize
     128        88208 :     LoadToLoopSetPoint = 0.0;
     129              : 
     130              :     // Get temperature at loop setpoint node.
     131        88208 :     TargetTemp = state.dataLoopNodes->Node(this->TempSetPointNodeNum).Temp;
     132        88208 :     MassFlowRate = state.dataLoopNodes->Node(this->TempSetPointNodeNum).MassFlowRate;
     133              : 
     134        88208 :     if (this->FluidType == DataLoopNode::NodeFluidType::Water) {
     135              : 
     136        88208 :         Cp = this->glycol->getSpecificHeat(state, TargetTemp, RoutineName);
     137              : 
     138        88208 :         switch (this->LoopDemandCalcScheme) {
     139        85302 :         case DataPlant::LoopDemandCalcScheme::SingleSetPoint: {
     140              : 
     141              :             // Pick up the loop setpoint temperature
     142        85302 :             LoopSetPointTemperature = this->LoopSide(DataPlant::LoopSideLocation::Supply).TempSetPoint;
     143              :             // Calculate the delta temperature
     144        85302 :             DeltaTemp = LoopSetPointTemperature - TargetTemp;
     145              : 
     146              :             // Calculate the demand on the loop
     147        85302 :             LoadToLoopSetPoint = MassFlowRate * Cp * DeltaTemp;
     148        85302 :         } break;
     149         2906 :         case DataPlant::LoopDemandCalcScheme::DualSetPointDeadBand: {
     150              :             // Get the range of setpoints
     151         2906 :             LoopSetPointTemperatureHi = state.dataLoopNodes->Node(this->TempSetPointNodeNum).TempSetPointHi;
     152         2906 :             LoopSetPointTemperatureLo = state.dataLoopNodes->Node(this->TempSetPointNodeNum).TempSetPointLo;
     153              : 
     154              :             // Calculate the demand on the loop
     155         2906 :             if (MassFlowRate > 0.0) {
     156         2880 :                 LoadToHeatingSetPoint = MassFlowRate * Cp * (LoopSetPointTemperatureLo - TargetTemp);
     157         2880 :                 LoadToCoolingSetPoint = MassFlowRate * Cp * (LoopSetPointTemperatureHi - TargetTemp);
     158              :                 // Possible combinations:
     159              :                 // 1  LoadToHeatingSetPoint > 0 & LoadToCoolingSetPoint > 0 -->  Heating required
     160              :                 // 2  LoadToHeatingSetPoint < 0 & LoadToCoolingSetPoint < 0 -->  Cooling Required
     161              :                 // 3  LoadToHeatingSetPoint <=0 & LoadToCoolingSetPoint >=0 -->  Dead Band Operation - includes zero load cases
     162              :                 // 4  LoadToHeatingSetPoint  >  LoadToCoolingSetPoint       -->  Not Feasible if LoopSetPointHi >= LoopSetPointLo
     163         2880 :                 if (LoadToHeatingSetPoint > 0.0 && LoadToCoolingSetPoint > 0.0) {
     164         1439 :                     LoadToLoopSetPoint = LoadToHeatingSetPoint;
     165         1441 :                 } else if (LoadToHeatingSetPoint < 0.0 && LoadToCoolingSetPoint < 0.0) {
     166         1439 :                     LoadToLoopSetPoint = LoadToCoolingSetPoint;
     167            2 :                 } else if (LoadToHeatingSetPoint <= 0.0 && LoadToCoolingSetPoint >= 0.0) { // deadband includes zero loads
     168            2 :                     LoadToLoopSetPoint = 0.0;
     169              :                 }
     170              :             } else {
     171           26 :                 LoadToLoopSetPoint = 0.0;
     172              :             }
     173         2906 :         } break;
     174            0 :         default:
     175            0 :             break;
     176              :         }
     177              : 
     178            0 :     } else if (this->FluidType == DataLoopNode::NodeFluidType::Steam) {
     179              : 
     180            0 :         Cp = this->glycol->getSpecificHeat(state, TargetTemp, RoutineName);
     181              : 
     182            0 :         switch (this->LoopDemandCalcScheme) {
     183            0 :         case DataPlant::LoopDemandCalcScheme::SingleSetPoint: {
     184              : 
     185              :             // Pick up the loop setpoint temperature
     186            0 :             LoopSetPointTemperature = this->LoopSide(DataPlant::LoopSideLocation::Supply).TempSetPoint;
     187              : 
     188              :             // Calculate the delta temperature
     189            0 :             DeltaTemp = LoopSetPointTemperature - TargetTemp;
     190              : 
     191            0 :             EnthalpySteamSatVapor = this->steam->getSatEnthalpy(state, LoopSetPointTemperature, 1.0, RoutineNameAlt);
     192            0 :             EnthalpySteamSatLiquid = this->steam->getSatEnthalpy(state, LoopSetPointTemperature, 0.0, RoutineNameAlt);
     193              : 
     194            0 :             LatentHeatSteam = EnthalpySteamSatVapor - EnthalpySteamSatLiquid;
     195              : 
     196              :             // Calculate the demand on the loop
     197            0 :             LoadToLoopSetPoint = MassFlowRate * (Cp * DeltaTemp + LatentHeatSteam);
     198            0 :         } break;
     199            0 :         default:
     200            0 :             break;
     201              :         }
     202              : 
     203              :     } else { // only have two types, water serves for glycol.
     204              :     }
     205              : 
     206              :     // Trim the demand to zero if it is very small
     207        88208 :     if (std::abs(LoadToLoopSetPoint) < LoopDemandTol) LoadToLoopSetPoint = 0.0;
     208              : 
     209        88208 :     this->UnmetDemand = LoadToLoopSetPoint;
     210        88208 : }
     211              : 
     212        88208 : void PlantLoopData::CheckLoopExitNode(EnergyPlusData &state, bool const FirstHVACIteration)
     213              : {
     214              : 
     215              :     // SUBROUTINE INFORMATION:
     216              :     //       AUTHOR         Dan Fisher
     217              :     //       DATE WRITTEN   October 1998
     218              :     //       MODIFIED       na
     219              :     //       RE-ENGINEERED  na
     220              : 
     221              :     // PURPOSE OF THIS SUBROUTINE:
     222              :     // This subroutine sets the temperature
     223              :     // and mass flow rate of the plant loop supply side exit
     224              :     // node.  As written, the routine calculates the exit
     225              :     // temperature based on the fraction of loop demand met
     226              :     // by the plant equipment.  This assumes that each piece
     227              :     // of operating plant equipment produced chilled/hot water
     228              :     // at the loop setpoint temperature.
     229              : 
     230              :     // Using/Aliasing
     231              : 
     232              :     // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
     233              :     int LoopInlet;  // plant loop inlet node num.
     234              :     int LoopOutlet; // plant loop outlet node num.
     235              : 
     236              :     // set local variables: loop inlet and outlet nodes
     237        88208 :     auto &Supply = this->LoopSide(DataPlant::LoopSideLocation::Supply);
     238        88208 :     LoopInlet = Supply.NodeNumIn;
     239        88208 :     LoopOutlet = Supply.NodeNumOut;
     240              :     // Check continuity invalid...loop pumps now turned on and off
     241        88208 :     if (!FirstHVACIteration && !state.dataGlobal->WarmupFlag) {
     242         8818 :         if (std::abs(state.dataLoopNodes->Node(LoopOutlet).MassFlowRate - state.dataLoopNodes->Node(LoopInlet).MassFlowRate) >
     243              :             DataBranchAirLoopPlant::MassFlowTolerance) {
     244            0 :             if (this->MFErrIndex == 0) {
     245            0 :                 ShowWarningError(state,
     246            0 :                                  "PlantSupplySide: PlantLoop=\"" + this->Name +
     247              :                                      "\", Error (CheckLoopExitNode) -- Mass Flow Rate Calculation. Outlet and Inlet differ by more than tolerance.");
     248            0 :                 ShowContinueErrorTimeStamp(state, "");
     249            0 :                 ShowContinueError(state,
     250            0 :                                   format("Loop inlet node={}, flowrate={:.4R} kg/s",
     251            0 :                                          state.dataLoopNodes->NodeID(LoopInlet),
     252            0 :                                          state.dataLoopNodes->Node(LoopInlet).MassFlowRate));
     253            0 :                 ShowContinueError(state,
     254            0 :                                   format("Loop outlet node={}, flowrate={:.4R} kg/s",
     255            0 :                                          state.dataLoopNodes->NodeID(LoopOutlet),
     256            0 :                                          state.dataLoopNodes->Node(LoopOutlet).MassFlowRate));
     257            0 :                 ShowContinueError(state, "This loop might be helped by a bypass.");
     258              :             }
     259            0 :             ShowRecurringWarningErrorAtEnd(
     260            0 :                 state, "PlantSupplySide: PlantLoop=\"" + this->Name + "\", Error -- Mass Flow Rate Calculation -- continues ** ", this->MFErrIndex);
     261              :         }
     262              :     }
     263              :     // Reset Max loop flow rate based on pump performance
     264        88208 :     state.dataLoopNodes->Node(LoopOutlet).MassFlowRateMax = state.dataLoopNodes->Node(LoopInlet).MassFlowRateMax;
     265        88208 : }
     266              : 
     267              : } // namespace EnergyPlus::DataPlant
        

Generated by: LCOV version 2.0-1