Line data Source code
1 : // EnergyPlus, Copyright (c) 1996-2025, The Board of Trustees of the University of Illinois,
2 : // The Regents of the University of California, through Lawrence Berkeley National Laboratory
3 : // (subject to receipt of any required approvals from the U.S. Dept. of Energy), Oak Ridge
4 : // National Laboratory, managed by UT-Battelle, Alliance for Sustainable Energy, LLC, and other
5 : // contributors. All rights reserved.
6 : //
7 : // NOTICE: This Software was developed under funding from the U.S. Department of Energy and the
8 : // U.S. Government consequently retains certain rights. As such, the U.S. Government has been
9 : // granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
10 : // worldwide license in the Software to reproduce, distribute copies to the public, prepare
11 : // derivative works, and perform publicly and display publicly, and to permit others to do so.
12 : //
13 : // Redistribution and use in source and binary forms, with or without modification, are permitted
14 : // provided that the following conditions are met:
15 : //
16 : // (1) Redistributions of source code must retain the above copyright notice, this list of
17 : // conditions and the following disclaimer.
18 : //
19 : // (2) Redistributions in binary form must reproduce the above copyright notice, this list of
20 : // conditions and the following disclaimer in the documentation and/or other materials
21 : // provided with the distribution.
22 : //
23 : // (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
24 : // the University of Illinois, U.S. Dept. of Energy nor the names of its contributors may be
25 : // used to endorse or promote products derived from this software without specific prior
26 : // written permission.
27 : //
28 : // (4) Use of EnergyPlus(TM) Name. If Licensee (i) distributes the software in stand-alone form
29 : // without changes from the version obtained under this License, or (ii) Licensee makes a
30 : // reference solely to the software portion of its product, Licensee must refer to the
31 : // software as "EnergyPlus version X" software, where "X" is the version number Licensee
32 : // obtained under this License and may not use a different name for the software. Except as
33 : // specifically required in this Section (4), Licensee shall not use in a company name, a
34 : // product name, in advertising, publicity, or other promotional activities any name, trade
35 : // name, trademark, logo, or other designation of "EnergyPlus", "E+", "e+" or confusingly
36 : // similar designation, without the U.S. Department of Energy's prior written consent.
37 : //
38 : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
39 : // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
40 : // AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
41 : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
42 : // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
43 : // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44 : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
45 : // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
46 : // POSSIBILITY OF SUCH DAMAGE.
47 :
48 : // C++ Headers
49 : #include <cmath>
50 :
51 : // ObjexxFCL Headers
52 : #include <ObjexxFCL/Array.functions.hh>
53 :
54 : // EnergyPlus Headers
55 : #include <EnergyPlus/BranchNodeConnections.hh>
56 : #include <EnergyPlus/Construction.hh>
57 : #include <EnergyPlus/ConvectionCoefficients.hh>
58 : #include <EnergyPlus/Data/EnergyPlusData.hh>
59 : #include <EnergyPlus/DataEnvironment.hh>
60 : #include <EnergyPlus/DataHVACGlobals.hh>
61 : #include <EnergyPlus/DataHeatBalance.hh>
62 : #include <EnergyPlus/DataIPShortCuts.hh>
63 : #include <EnergyPlus/DataLoopNode.hh>
64 : #include <EnergyPlus/DataPrecisionGlobals.hh>
65 : #include <EnergyPlus/FluidProperties.hh>
66 : #include <EnergyPlus/General.hh>
67 : #include <EnergyPlus/InputProcessing/InputProcessor.hh>
68 : #include <EnergyPlus/Material.hh>
69 : #include <EnergyPlus/NodeInputManager.hh>
70 : #include <EnergyPlus/OutputProcessor.hh>
71 : #include <EnergyPlus/Plant/DataPlant.hh>
72 : #include <EnergyPlus/PlantUtilities.hh>
73 : #include <EnergyPlus/SurfaceGroundHeatExchanger.hh>
74 : #include <EnergyPlus/UtilityRoutines.hh>
75 :
76 : namespace EnergyPlus {
77 :
78 : namespace SurfaceGroundHeatExchanger {
79 :
80 : // Module containing the routines dealing with surface/panel ground heat exchangers
81 :
82 : // MODULE INFORMATION:
83 : // AUTHOR Simon Rees
84 : // DATE WRITTEN August 2002
85 : // MODIFIED Brent Griffith, Sept 2010, plant upgrades
86 : // RE-ENGINEERED na
87 :
88 : // PURPOSE OF THIS MODULE:
89 : // The purpose of this module is to simulate hydronic Surface Ground Heat
90 : // Exchangers. This includes pavement surfaces with embedded pipes for snow-
91 : // melting or heat rejection from hybrid ground source heat pump systems.
92 : // The heat exchanger may be gound coupled or not. In the latter case the
93 : // bottom surface is exposed to the wind but not solar gains.
94 :
95 : // METHODOLOGY EMPLOYED:
96 : // This model is based on the QTF formulation of heat transfer through
97 : // building elements with embedded heat sources/sinks. The model uses
98 : // a heat exchanger analogy to relate the inlet fluid temperature to the
99 : // net heat transfer rate and consequently outlet temperature. The model
100 : // is entirely passive i.e. it does not set any flow rates or incorporate
101 : // any controls. In order to deal with the non-linear boundary conditions
102 : // at the top surface due to the presence of ice/snow fluxes have to be
103 : // calculated by the QTF model and temperature calculated from the surface
104 : // heat balance. This requires some iteration.
105 : // Note: top surface variables correspond to 'outside' variables in standard
106 : // CTF/QTF definition. Bottom surface variables correspond to 'inside' variables.
107 :
108 : // REFERENCES:
109 : // Strand, R.K. 1995. "Heat Source Transfer Functions and Their Application to
110 : // Low Temperature Radiant Heating Systems", Ph.D. dissertation, University
111 : // of Illinois at Urbana-Champaign, Department of Mechanical and Industrial
112 : // Engineering.
113 : // Seem, J.E. 1986. "Heat Transfer in Buildings", Ph.D. dissertation, University
114 : // of Wisconsin-Madison.
115 :
116 : // OTHER NOTES: none
117 :
118 : // USE STATEMENTS:
119 : // Use statements for data only modules
120 : // Using/Aliasing
121 : using namespace DataLoopNode;
122 :
123 : // Use statements for access to subroutines in other modules
124 :
125 : // Data
126 : // MODULE PARAMETER DEFINITIONS
127 : Real64 constexpr SmallNum(1.0e-30); // Very small number to avoid div0 errors
128 : Real64 constexpr StefBoltzmann(5.6697e-08); // Stefan-Boltzmann constant
129 : Real64 constexpr SurfaceHXHeight(0.0); // Surface Height above ground -- used in height dependent calcs.
130 :
131 : int constexpr SurfCond_Ground(1);
132 : int constexpr SurfCond_Exposed(2);
133 :
134 0 : PlantComponent *SurfaceGroundHeatExchangerData::factory(EnergyPlusData &state,
135 : [[maybe_unused]] DataPlant::PlantEquipmentType objectType,
136 : std::string const objectName)
137 : {
138 0 : if (state.dataSurfaceGroundHeatExchangers->GetInputFlag) {
139 0 : GetSurfaceGroundHeatExchanger(state);
140 0 : state.dataSurfaceGroundHeatExchangers->GetInputFlag = false;
141 : }
142 : // Now look for this particular pipe in the list
143 0 : for (auto &ghx : state.dataSurfaceGroundHeatExchangers->SurfaceGHE) {
144 0 : if (ghx.Name == objectName) {
145 0 : return &ghx;
146 : }
147 : }
148 : // If we didn't find it, fatal
149 0 : ShowFatalError(state, format("Surface Ground Heat Exchanger: Error getting inputs for pipe named: {}", objectName));
150 : // Shut up the compiler
151 0 : return nullptr;
152 : }
153 :
154 0 : void SurfaceGroundHeatExchangerData::simulate(EnergyPlusData &state,
155 : [[maybe_unused]] const PlantLocation &calledFromLocation,
156 : bool const FirstHVACIteration,
157 : [[maybe_unused]] Real64 &CurLoad,
158 : [[maybe_unused]] bool const RunFlag)
159 : {
160 0 : this->InitSurfaceGroundHeatExchanger(state);
161 0 : this->CalcSurfaceGroundHeatExchanger(state, FirstHVACIteration);
162 0 : this->UpdateSurfaceGroundHeatExchngr(state);
163 0 : this->ReportSurfaceGroundHeatExchngr(state);
164 0 : }
165 :
166 0 : void GetSurfaceGroundHeatExchanger(EnergyPlusData &state)
167 : {
168 :
169 : // SUBROUTINE INFORMATION:
170 : // AUTHOR Simon Rees
171 : // DATE WRITTEN August 2002
172 : // MODIFIED na
173 : // RE-ENGINEERED na
174 :
175 : // PURPOSE OF THIS SUBROUTINE:
176 : // This subroutine reads the input for hydronic Surface Ground Heat Exchangers
177 : // from the user input file. This will contain all of the information
178 : // needed to define and simulate the surface.
179 :
180 : // METHODOLOGY EMPLOYED:
181 : // Standard EnergyPlus methodology.
182 :
183 : // Using/Aliasing
184 : using BranchNodeConnections::TestCompSet;
185 : using NodeInputManager::GetOnlySingleNode;
186 : using namespace DataLoopNode;
187 :
188 : // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
189 :
190 0 : bool ErrorsFound(false); // Set to true if errors in input,
191 : // fatal at end of routine
192 : int IOStatus; // Used in GetObjectItem
193 : int Item; // Item to be "gotten"
194 : int NumAlphas; // Number of Alphas for each GetObjectItem call
195 : int NumNumbers; // Number of Numbers for each GetObjectItem call
196 0 : auto &cCurrentModuleObject = state.dataIPShortCut->cCurrentModuleObject;
197 : // Initializations and allocations
198 0 : cCurrentModuleObject = "GroundHeatExchanger:Surface";
199 0 : int NumOfSurfaceGHEs = state.dataInputProcessing->inputProcessor->getNumObjectsFound(state, cCurrentModuleObject);
200 : // allocate data structures
201 0 : if (allocated(state.dataSurfaceGroundHeatExchangers->SurfaceGHE)) state.dataSurfaceGroundHeatExchangers->SurfaceGHE.deallocate();
202 :
203 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE.allocate(NumOfSurfaceGHEs);
204 0 : state.dataSurfaceGroundHeatExchangers->CheckEquipName.dimension(NumOfSurfaceGHEs, true);
205 :
206 : // initialize data structures
207 : // surface data
208 : // Obtain all of the user data related to the surfaces...
209 0 : for (Item = 1; Item <= NumOfSurfaceGHEs; ++Item) {
210 :
211 : // get the input data
212 0 : state.dataInputProcessing->inputProcessor->getObjectItem(state,
213 : cCurrentModuleObject,
214 : Item,
215 0 : state.dataIPShortCut->cAlphaArgs,
216 : NumAlphas,
217 0 : state.dataIPShortCut->rNumericArgs,
218 : NumNumbers,
219 : IOStatus,
220 : _,
221 : _,
222 0 : state.dataIPShortCut->cAlphaFieldNames,
223 0 : state.dataIPShortCut->cNumericFieldNames);
224 :
225 : // General user input data
226 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name = state.dataIPShortCut->cAlphaArgs(1);
227 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).ConstructionName = state.dataIPShortCut->cAlphaArgs(2);
228 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).ConstructionNum =
229 0 : Util::FindItemInList(state.dataIPShortCut->cAlphaArgs(2), state.dataConstruction->Construct);
230 :
231 0 : if (state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).ConstructionNum == 0) {
232 0 : ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(2), state.dataIPShortCut->cAlphaArgs(2)));
233 0 : ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
234 0 : ErrorsFound = true;
235 : }
236 :
237 : // Error checking for surfaces, zones, and construction information
238 0 : if (!state.dataConstruction->Construct(state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).ConstructionNum).SourceSinkPresent) {
239 0 : ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(2), state.dataIPShortCut->cAlphaArgs(2)));
240 0 : ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
241 0 : ShowContinueError(
242 : state, "Construction must have internal source/sink and be referenced by a ConstructionProperty:InternalHeatSource object");
243 0 : ErrorsFound = true;
244 : }
245 :
246 : // get inlet node data
247 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).InletNode = state.dataIPShortCut->cAlphaArgs(3);
248 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).InletNodeNum =
249 0 : GetOnlySingleNode(state,
250 0 : state.dataIPShortCut->cAlphaArgs(3),
251 : ErrorsFound,
252 : DataLoopNode::ConnectionObjectType::GroundHeatExchangerSurface,
253 0 : state.dataIPShortCut->cAlphaArgs(1),
254 : DataLoopNode::NodeFluidType::Water,
255 : DataLoopNode::ConnectionType::Inlet,
256 : NodeInputManager::CompFluidStream::Primary,
257 : ObjectIsNotParent);
258 0 : if (state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).InletNodeNum == 0) {
259 0 : ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(3), state.dataIPShortCut->cAlphaArgs(3)));
260 0 : ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
261 0 : ErrorsFound = true;
262 : }
263 :
264 : // get outlet node data
265 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).OutletNode = state.dataIPShortCut->cAlphaArgs(4);
266 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).OutletNodeNum =
267 0 : GetOnlySingleNode(state,
268 0 : state.dataIPShortCut->cAlphaArgs(4),
269 : ErrorsFound,
270 : DataLoopNode::ConnectionObjectType::GroundHeatExchangerSurface,
271 0 : state.dataIPShortCut->cAlphaArgs(1),
272 : DataLoopNode::NodeFluidType::Water,
273 : DataLoopNode::ConnectionType::Outlet,
274 : NodeInputManager::CompFluidStream::Primary,
275 : ObjectIsNotParent);
276 0 : if (state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).OutletNodeNum == 0) {
277 0 : ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(4), state.dataIPShortCut->cAlphaArgs(4)));
278 0 : ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
279 0 : ErrorsFound = true;
280 : }
281 :
282 0 : TestCompSet(state,
283 : cCurrentModuleObject,
284 0 : state.dataIPShortCut->cAlphaArgs(1),
285 0 : state.dataIPShortCut->cAlphaArgs(3),
286 0 : state.dataIPShortCut->cAlphaArgs(4),
287 : "Condenser Water Nodes");
288 :
289 : // tube data
290 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).TubeDiameter = state.dataIPShortCut->rNumericArgs(1);
291 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).TubeCircuits = state.dataIPShortCut->rNumericArgs(2);
292 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).TubeSpacing = state.dataIPShortCut->rNumericArgs(3);
293 :
294 0 : if (state.dataIPShortCut->rNumericArgs(2) == 0) {
295 0 : ShowSevereError(state,
296 0 : format("Invalid {}={:.2R}", state.dataIPShortCut->cNumericFieldNames(2), state.dataIPShortCut->rNumericArgs(2)));
297 0 : ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
298 0 : ShowContinueError(state, "Value must be greater than 0.0");
299 0 : ErrorsFound = true;
300 : }
301 0 : if (state.dataIPShortCut->rNumericArgs(3) == 0.0) {
302 0 : ShowSevereError(state,
303 0 : format("Invalid {}={:.2R}", state.dataIPShortCut->cNumericFieldNames(3), state.dataIPShortCut->rNumericArgs(3)));
304 0 : ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
305 0 : ShowContinueError(state, "Value must be greater than 0.0");
306 0 : ErrorsFound = true;
307 : }
308 :
309 : // surface geometry data
310 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).SurfaceLength = state.dataIPShortCut->rNumericArgs(4);
311 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).SurfaceWidth = state.dataIPShortCut->rNumericArgs(5);
312 0 : if (state.dataIPShortCut->rNumericArgs(4) <= 0.0) {
313 0 : ShowSevereError(state,
314 0 : format("Invalid {}={:.2R}", state.dataIPShortCut->cNumericFieldNames(4), state.dataIPShortCut->rNumericArgs(4)));
315 0 : ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
316 0 : ShowContinueError(state, "Value must be greater than 0.0");
317 0 : ErrorsFound = true;
318 : }
319 0 : if (state.dataIPShortCut->rNumericArgs(5) <= 0.0) {
320 0 : ShowSevereError(state,
321 0 : format("Invalid {}={:.2R}", state.dataIPShortCut->cNumericFieldNames(5), state.dataIPShortCut->rNumericArgs(5)));
322 0 : ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
323 0 : ShowContinueError(state, "Value must be greater than 0.0");
324 0 : ErrorsFound = true;
325 : }
326 :
327 : // get lower b.c. type
328 0 : if (Util::SameString(state.dataIPShortCut->cAlphaArgs(5), "GROUND")) {
329 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).LowerSurfCond = SurfCond_Ground;
330 0 : } else if (Util::SameString(state.dataIPShortCut->cAlphaArgs(5), "EXPOSED")) {
331 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).LowerSurfCond = SurfCond_Exposed;
332 : } else {
333 0 : ShowSevereError(state, format("Invalid {}={}", state.dataIPShortCut->cAlphaFieldNames(5), state.dataIPShortCut->cAlphaArgs(5)));
334 0 : ShowContinueError(state, format("Entered in {}={}", cCurrentModuleObject, state.dataIPShortCut->cAlphaArgs(1)));
335 0 : ShowContinueError(state, "Only \"Ground\" or \"Exposed\" is allowed.");
336 0 : ErrorsFound = true;
337 : }
338 :
339 : } // end of input loop
340 :
341 : // final error check
342 0 : if (ErrorsFound) {
343 0 : ShowFatalError(state, format("Errors found in processing input for {}", cCurrentModuleObject));
344 : }
345 :
346 : // Set up the output variables
347 0 : for (Item = 1; Item <= NumOfSurfaceGHEs; ++Item) {
348 0 : SetupOutputVariable(state,
349 : "Ground Heat Exchanger Heat Transfer Rate",
350 : Constant::Units::W,
351 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).HeatTransferRate,
352 : OutputProcessor::TimeStepType::System,
353 : OutputProcessor::StoreType::Average,
354 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
355 0 : SetupOutputVariable(state,
356 : "Ground Heat Exchanger Surface Heat Transfer Rate",
357 : Constant::Units::W,
358 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).SurfHeatTransferRate,
359 : OutputProcessor::TimeStepType::System,
360 : OutputProcessor::StoreType::Average,
361 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
362 0 : SetupOutputVariable(state,
363 : "Ground Heat Exchanger Heat Transfer Energy",
364 : Constant::Units::J,
365 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Energy,
366 : OutputProcessor::TimeStepType::System,
367 : OutputProcessor::StoreType::Sum,
368 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
369 0 : SetupOutputVariable(state,
370 : "Ground Heat Exchanger Mass Flow Rate",
371 : Constant::Units::kg_s,
372 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).MassFlowRate,
373 : OutputProcessor::TimeStepType::System,
374 : OutputProcessor::StoreType::Average,
375 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
376 0 : SetupOutputVariable(state,
377 : "Ground Heat Exchanger Inlet Temperature",
378 : Constant::Units::C,
379 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).InletTemp,
380 : OutputProcessor::TimeStepType::System,
381 : OutputProcessor::StoreType::Average,
382 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
383 0 : SetupOutputVariable(state,
384 : "Ground Heat Exchanger Outlet Temperature",
385 : Constant::Units::C,
386 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).OutletTemp,
387 : OutputProcessor::TimeStepType::System,
388 : OutputProcessor::StoreType::Average,
389 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
390 0 : SetupOutputVariable(state,
391 : "Ground Heat Exchanger Top Surface Temperature",
392 : Constant::Units::C,
393 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).TopSurfaceTemp,
394 : OutputProcessor::TimeStepType::System,
395 : OutputProcessor::StoreType::Average,
396 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
397 0 : SetupOutputVariable(state,
398 : "Ground Heat Exchanger Bottom Surface Temperature",
399 : Constant::Units::C,
400 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).BtmSurfaceTemp,
401 : OutputProcessor::TimeStepType::System,
402 : OutputProcessor::StoreType::Average,
403 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
404 0 : SetupOutputVariable(state,
405 : "Ground Heat Exchanger Top Surface Heat Transfer Energy per Area",
406 : Constant::Units::J_m2,
407 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).TopSurfaceFlux,
408 : OutputProcessor::TimeStepType::System,
409 : OutputProcessor::StoreType::Average,
410 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
411 0 : SetupOutputVariable(state,
412 : "Ground Heat Exchanger Bottom Surface Heat Transfer Energy per Area",
413 : Constant::Units::J_m2,
414 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).BtmSurfaceFlux,
415 : OutputProcessor::TimeStepType::System,
416 : OutputProcessor::StoreType::Average,
417 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
418 0 : SetupOutputVariable(state,
419 : "Ground Heat Exchanger Surface Heat Transfer Energy",
420 : Constant::Units::J,
421 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).SurfEnergy,
422 : OutputProcessor::TimeStepType::System,
423 : OutputProcessor::StoreType::Sum,
424 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
425 0 : SetupOutputVariable(state,
426 : "Ground Heat Exchanger Source Temperature",
427 : Constant::Units::C,
428 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).SourceTemp,
429 : OutputProcessor::TimeStepType::System,
430 : OutputProcessor::StoreType::Average,
431 0 : state.dataSurfaceGroundHeatExchangers->SurfaceGHE(Item).Name);
432 : }
433 :
434 0 : if (state.dataSurfaceGroundHeatExchangers->NoSurfaceGroundTempObjWarning) {
435 0 : if (!state.dataEnvrn->GroundTempInputs[(int)DataEnvironment::GroundTempType::Shallow]) {
436 0 : ShowWarningError(state, "GetSurfaceGroundHeatExchanger: No \"Site:GroundTemperature:Shallow\" were input.");
437 0 : ShowContinueError(state,
438 0 : format("Defaults, constant throughout the year of ({:.1R}) will be used.",
439 0 : state.dataEnvrn->GroundTemp[(int)DataEnvironment::GroundTempType::Shallow]));
440 : }
441 0 : state.dataSurfaceGroundHeatExchangers->NoSurfaceGroundTempObjWarning = false;
442 : }
443 0 : }
444 :
445 0 : void SurfaceGroundHeatExchangerData::InitSurfaceGroundHeatExchanger(EnergyPlusData &state)
446 : {
447 :
448 : // SUBROUTINE INFORMATION:
449 : // AUTHOR Simon Rees
450 : // DATE WRITTEN August 2002
451 : // MODIFIED na
452 : // RE-ENGINEERED na
453 :
454 : // PURPOSE OF THIS SUBROUTINE:
455 : // This subroutine Resets the elements of the data structure as necessary
456 : // at the first HVAC iteration of each time step. The weather and QTF data
457 : // is initialized once only.
458 :
459 : // METHODOLOGY EMPLOYED:
460 : // Check flags and update data structure
461 :
462 : // Using/Aliasing
463 : using namespace DataEnvironment;
464 : using PlantUtilities::RegulateCondenserCompFlowReqOp;
465 : using PlantUtilities::SetComponentFlowRate;
466 :
467 : // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
468 :
469 : Real64 DesignFlow; // Hypothetical design flow rate
470 : int Cons; // construction counter
471 : int LayerNum; // material layer number for bottom
472 : Real64 OutDryBulb; // Height Dependent dry bulb.
473 :
474 0 : auto &s_mat = state.dataMaterial;
475 :
476 : // get QTF data - only once
477 0 : if (this->InitQTF) {
478 0 : for (Cons = 1; Cons <= state.dataHeatBal->TotConstructs; ++Cons) {
479 0 : if (Util::SameString(state.dataConstruction->Construct(Cons).Name, this->ConstructionName)) {
480 : // some error checking ??
481 : // CTF stuff
482 0 : LayerNum = state.dataConstruction->Construct(Cons).TotLayers;
483 0 : this->NumCTFTerms = state.dataConstruction->Construct(Cons).NumCTFTerms;
484 0 : this->CTFin = state.dataConstruction->Construct(Cons).CTFInside; // Z coefficents
485 0 : this->CTFout = state.dataConstruction->Construct(Cons).CTFOutside; // X coefficents
486 0 : this->CTFcross = state.dataConstruction->Construct(Cons).CTFCross; // Y coefficents
487 0 : for (size_t i = 1; i < state.dataConstruction->Construct(Cons).CTFFlux.size(); i++) {
488 0 : this->CTFflux[i] = state.dataConstruction->Construct(Cons).CTFFlux[i]; // F & f coefficents
489 : }
490 : // QTF stuff
491 0 : this->CTFSourceIn = state.dataConstruction->Construct(Cons).CTFSourceIn; // Wi coefficents
492 0 : this->CTFSourceOut = state.dataConstruction->Construct(Cons).CTFSourceOut; // Wo coefficents
493 0 : this->CTFTSourceOut = state.dataConstruction->Construct(Cons).CTFTSourceOut; // y coefficents
494 0 : this->CTFTSourceIn = state.dataConstruction->Construct(Cons).CTFTSourceIn; // x coefficents
495 0 : this->CTFTSourceQ = state.dataConstruction->Construct(Cons).CTFTSourceQ; // w coefficents
496 0 : this->ConstructionNum = Cons;
497 : // surface properties
498 0 : auto const *thisMaterialLayer = s_mat->materials(state.dataConstruction->Construct(Cons).LayerPoint(LayerNum));
499 0 : assert(thisMaterialLayer != nullptr);
500 0 : this->BtmRoughness = thisMaterialLayer->Roughness;
501 0 : this->TopThermAbs = thisMaterialLayer->AbsorpThermal;
502 0 : auto const *thisMaterial1 = s_mat->materials(state.dataConstruction->Construct(Cons).LayerPoint(1));
503 0 : assert(thisMaterial1 != nullptr);
504 0 : this->TopRoughness = thisMaterial1->Roughness;
505 0 : this->TopThermAbs = thisMaterial1->AbsorpThermal;
506 0 : this->TopSolarAbs = thisMaterial1->AbsorpSolar;
507 : }
508 : }
509 : // set one-time flag
510 0 : this->InitQTF = false;
511 : }
512 :
513 0 : if (this->MyEnvrnFlag && state.dataGlobal->BeginEnvrnFlag) {
514 0 : OutDryBulb = OutDryBulbTempAt(state, SurfaceHXHeight);
515 0 : this->CTFflux[0] = 0.0;
516 0 : this->TsrcHistory.fill(OutDryBulb);
517 0 : this->TbtmHistory.fill(OutDryBulb);
518 0 : this->TtopHistory.fill(OutDryBulb);
519 0 : this->TsrcHistory.fill(OutDryBulb);
520 0 : this->QbtmHistory.fill(0.0);
521 0 : this->QtopHistory.fill(0.0);
522 0 : this->QsrcHistory.fill(0.0);
523 0 : this->TsrcConstCoef = 0.0;
524 0 : this->TsrcVarCoef = 0.0;
525 0 : this->QbtmConstCoef = 0.0;
526 0 : this->QbtmVarCoef = 0.0;
527 0 : this->QtopConstCoef = 0.0;
528 0 : this->QtopVarCoef = 0.0;
529 0 : this->QSrc = 0.0;
530 0 : this->QSrcAvg = 0.0;
531 0 : this->LastQSrc = 0.0;
532 0 : this->LastSysTimeElapsed = 0.0;
533 0 : this->LastTimeStepSys = 0.0;
534 : // initialize past weather variables
535 0 : state.dataSurfaceGroundHeatExchangers->PastBeamSolarRad = state.dataEnvrn->BeamSolarRad;
536 0 : state.dataSurfaceGroundHeatExchangers->PastSolarDirCosVert = state.dataEnvrn->SOLCOS(3);
537 0 : state.dataSurfaceGroundHeatExchangers->PastDifSolarRad = state.dataEnvrn->DifSolarRad;
538 0 : state.dataSurfaceGroundHeatExchangers->PastGroundTemp = state.dataEnvrn->GroundTemp[(int)DataEnvironment::GroundTempType::Shallow];
539 0 : state.dataSurfaceGroundHeatExchangers->PastIsRain = state.dataEnvrn->IsRain;
540 0 : state.dataSurfaceGroundHeatExchangers->PastIsSnow = state.dataEnvrn->IsSnow;
541 0 : state.dataSurfaceGroundHeatExchangers->PastOutDryBulbTemp = OutDryBulbTempAt(state, SurfaceHXHeight);
542 0 : state.dataSurfaceGroundHeatExchangers->PastOutWetBulbTemp = OutWetBulbTempAt(state, SurfaceHXHeight);
543 0 : state.dataSurfaceGroundHeatExchangers->PastSkyTemp = state.dataEnvrn->SkyTemp;
544 0 : state.dataSurfaceGroundHeatExchangers->PastWindSpeed = DataEnvironment::WindSpeedAt(state, SurfaceHXHeight);
545 0 : this->MyEnvrnFlag = false;
546 : }
547 :
548 0 : if (!state.dataGlobal->BeginEnvrnFlag) this->MyEnvrnFlag = true;
549 :
550 : // always initialize - module variables
551 0 : this->SurfaceArea = this->SurfaceLength * this->SurfaceWidth;
552 :
553 : // If loop operation is controlled by an environmental variable (DBtemp, WBtemp, etc)
554 : // then shut branch down when equipment is not scheduled to run.
555 0 : DesignFlow = RegulateCondenserCompFlowReqOp(state, this->plantLoc, this->DesignMassFlowRate);
556 :
557 0 : SetComponentFlowRate(state, DesignFlow, this->InletNodeNum, this->OutletNodeNum, this->plantLoc);
558 :
559 : // get the current flow rate - module variable
560 0 : state.dataSurfaceGroundHeatExchangers->FlowRate = state.dataLoopNodes->Node(this->InletNodeNum).MassFlowRate;
561 0 : }
562 :
563 0 : void SurfaceGroundHeatExchangerData::CalcSurfaceGroundHeatExchanger(
564 : EnergyPlusData &state, bool const FirstHVACIteration // TRUE if 1st HVAC simulation of system timestep
565 : )
566 : {
567 :
568 : // AUTHOR Simon Rees
569 : // DATE WRITTEN August 2002
570 : // MODIFIED na
571 : // RE-ENGINEERED na
572 :
573 : // PURPOSE OF THIS SUBROUTINE:
574 : // This subroutine does all of the stuff that is necessary to simulate
575 : // a surface ground heat exchanger. Calls are made to appropriate subroutines
576 : // either in this module or outside of it.
577 :
578 : // METHODOLOGY EMPLOYED:
579 : // To update temperature and flux histories it is necessary to make a surface
580 : // flux/temperature calculation at the begining of each zone time step using the
581 : // weather data from the previous step, and using the average source flux.
582 : // Once this has been done a new source flux, and current surface temperatures,
583 : // are calculated using the current weather data. These surface temperatures and
584 : // fluxes are used for the rest of the system time steps. During subsequent system
585 : // time steps only the source flux is updated.
586 :
587 : // Surface fluxes are calculated from the QTF equations using assumed surface
588 : // temperatures. Surface fluxes are then dependant only on source flux. Constant
589 : // and terms and terms that multiply the source flux from the QTF equations, are
590 : // grouped together for convenience. These are calculated in "CalcBottomFluxCoefficents"
591 : // etc. It is necessary to iterate on these equations, updating the current surface
592 : // temperatures at each step.
593 :
594 : // REFERENCES:
595 : // See 'LowTempRadiantSystem' module
596 : // IBLAST-QTF research program, completed in January 1995 (unreleased)
597 : // Strand, R.K. 1995. "Heat Source Transfer Functions and Their Application to
598 : // Low Temperature Radiant Heating Systems", Ph.D. dissertation, University
599 : // of Illinois at Urbana-Champaign, Department of Mechanical and Industrial
600 : // Engineering.
601 : // Seem, J.E. 1986. "Heat Transfer in Buildings", Ph.D. dissertation, University
602 : // of Wisconsin-Madison.
603 :
604 : // Using/Aliasing
605 : using namespace DataEnvironment;
606 :
607 0 : Real64 constexpr SurfFluxTol(0.001); // tolerance on the surface fluxes
608 0 : Real64 constexpr SrcFluxTol(0.001); // tolerance on the source flux
609 0 : Real64 constexpr RelaxT(0.1); // temperature relaxation factor
610 0 : int constexpr Maxiter(100);
611 0 : int constexpr Maxiter1(100);
612 :
613 : // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
614 : Real64 PastFluxTop; // top surface flux - past value
615 : Real64 PastFluxBtm; // bottom surface flux - past value
616 : Real64 PastTempBtm; // bottom surface temp - past value
617 : Real64 PastTempTop; // top surface temp - past value
618 : Real64 OldPastFluxTop; // top surface flux - past value used during iteration
619 : Real64 OldPastFluxBtm; // bottom surface flux - past value used during iteration
620 : // variables used with current environmental conditions
621 0 : auto &FluxTop = state.dataSurfaceGroundHeatExchangers->FluxTop; // top surface flux
622 0 : auto &FluxBtm = state.dataSurfaceGroundHeatExchangers->FluxBtm; // bottom surface flux
623 0 : auto &TempBtm = state.dataSurfaceGroundHeatExchangers->TempBtm; // bottom surface temp
624 0 : auto &TempTop = state.dataSurfaceGroundHeatExchangers->TempTop; // top surface temp
625 : Real64 TempT; // top surface temp - used in underrelaxation
626 : Real64 TempB; // bottom surface temp - used in underrelaxation
627 : Real64 OldFluxTop; // top surface flux - value used during iteration
628 : Real64 OldFluxBtm; // bottom surface flux - value used during iteration
629 : Real64 OldSourceFlux; // previous value of source flux - used during iteration
630 : int iter;
631 : int iter1;
632 :
633 : // check if we are in very first call for this zone time step
634 0 : if (FirstHVACIteration && !state.dataHVACGlobal->ShortenTimeStepSys && this->firstTimeThrough) {
635 0 : this->firstTimeThrough = false;
636 : // calc temps and fluxes with past env. conditions and average source flux
637 0 : state.dataSurfaceGroundHeatExchangers->SourceFlux = this->QSrcAvg;
638 : // starting values for the surface temps
639 0 : PastTempBtm = this->TbtmHistory[1];
640 0 : PastTempTop = this->TtopHistory[1];
641 0 : OldPastFluxTop = 1.0e+30;
642 0 : OldPastFluxBtm = 1.0e+30;
643 0 : TempB = 0.0;
644 0 : TempT = 0.0;
645 0 : iter = 0;
646 : while (true) { // iterate to find surface heat balances
647 : // update coefficients
648 :
649 0 : ++iter;
650 0 : CalcTopFluxCoefficents(PastTempBtm, PastTempTop);
651 : // calc top surface flux
652 0 : PastFluxTop = this->QtopConstCoef + this->QtopVarCoef * state.dataSurfaceGroundHeatExchangers->SourceFlux;
653 :
654 : // calc new top surface temp
655 0 : CalcTopSurfTemp(-PastFluxTop,
656 : TempT,
657 0 : state.dataSurfaceGroundHeatExchangers->PastOutDryBulbTemp,
658 0 : state.dataSurfaceGroundHeatExchangers->PastOutWetBulbTemp,
659 0 : state.dataSurfaceGroundHeatExchangers->PastSkyTemp,
660 0 : state.dataSurfaceGroundHeatExchangers->PastBeamSolarRad,
661 0 : state.dataSurfaceGroundHeatExchangers->PastDifSolarRad,
662 0 : state.dataSurfaceGroundHeatExchangers->PastSolarDirCosVert,
663 0 : state.dataSurfaceGroundHeatExchangers->PastWindSpeed,
664 0 : state.dataSurfaceGroundHeatExchangers->PastIsRain,
665 0 : state.dataSurfaceGroundHeatExchangers->PastIsSnow);
666 : // under relax
667 0 : PastTempTop = PastTempTop * (1.0 - RelaxT) + RelaxT * TempT;
668 :
669 : // update coefficients
670 0 : CalcBottomFluxCoefficents(PastTempBtm, PastTempTop);
671 0 : PastFluxBtm = this->QbtmConstCoef + this->QbtmVarCoef * state.dataSurfaceGroundHeatExchangers->SourceFlux;
672 :
673 0 : if (std::abs((OldPastFluxTop - PastFluxTop) / OldPastFluxTop) <= SurfFluxTol &&
674 0 : std::abs((OldPastFluxBtm - PastFluxBtm) / OldPastFluxBtm) <= SurfFluxTol)
675 0 : break;
676 :
677 : // calc new surface temps
678 0 : CalcBottomSurfTemp(PastFluxBtm,
679 : TempB,
680 0 : state.dataSurfaceGroundHeatExchangers->PastOutDryBulbTemp,
681 0 : state.dataSurfaceGroundHeatExchangers->PastWindSpeed,
682 0 : state.dataSurfaceGroundHeatExchangers->PastGroundTemp);
683 : // underrelax
684 0 : PastTempBtm = PastTempBtm * (1.0 - RelaxT) + RelaxT * TempB;
685 : // update flux record
686 0 : OldPastFluxTop = PastFluxTop;
687 0 : OldPastFluxBtm = PastFluxBtm;
688 :
689 : // Check for non-convergence
690 0 : if (iter > Maxiter) {
691 0 : if (this->ConvErrIndex1 == 0) {
692 0 : ShowWarningMessage(
693 0 : state, format("CalcSurfaceGroundHeatExchanger=\"{}\", Did not converge (part 1), Iterations={}", this->Name, Maxiter));
694 0 : ShowContinueErrorTimeStamp(state, "");
695 : }
696 0 : ShowRecurringWarningErrorAtEnd(
697 0 : state, "CalcSurfaceGroundHeatExchanger=\"" + this->Name + "\", Did not converge (part 1)", this->ConvErrIndex1);
698 0 : break;
699 : }
700 : }
701 :
702 0 : if (!state.dataSurfaceGroundHeatExchangers->InitializeTempTop) {
703 0 : TempTop = TempT;
704 0 : TempBtm = TempB;
705 0 : FluxTop = PastFluxTop;
706 0 : FluxBtm = PastFluxBtm;
707 0 : state.dataSurfaceGroundHeatExchangers->InitializeTempTop = true;
708 : }
709 :
710 : // update module variables
711 0 : state.dataSurfaceGroundHeatExchangers->TopSurfTemp = TempTop;
712 0 : state.dataSurfaceGroundHeatExchangers->BtmSurfTemp = TempBtm;
713 0 : state.dataSurfaceGroundHeatExchangers->TopSurfFlux = -FluxTop;
714 0 : state.dataSurfaceGroundHeatExchangers->BtmSurfFlux = FluxBtm;
715 :
716 : // get source temp for output
717 0 : CalcSourceTempCoefficents(PastTempBtm, PastTempTop);
718 0 : this->SourceTemp = this->TsrcConstCoef + this->TsrcVarCoef * state.dataSurfaceGroundHeatExchangers->SourceFlux;
719 : // update histories
720 0 : UpdateHistories(PastFluxTop, PastFluxBtm, state.dataSurfaceGroundHeatExchangers->SourceFlux, this->SourceTemp);
721 :
722 : // At the beginning of a time step, reset to zero so average calculation can start again
723 0 : this->QSrcAvg = 0.0;
724 0 : this->LastSysTimeElapsed = 0.0;
725 0 : this->LastTimeStepSys = 0.0;
726 :
727 : // get current env. conditions
728 0 : state.dataSurfaceGroundHeatExchangers->PastBeamSolarRad = state.dataEnvrn->BeamSolarRad;
729 0 : state.dataSurfaceGroundHeatExchangers->PastSolarDirCosVert = state.dataEnvrn->SOLCOS(3);
730 0 : state.dataSurfaceGroundHeatExchangers->PastDifSolarRad = state.dataEnvrn->DifSolarRad;
731 0 : state.dataSurfaceGroundHeatExchangers->PastGroundTemp = state.dataEnvrn->GroundTemp[(int)DataEnvironment::GroundTempType::Shallow];
732 0 : state.dataSurfaceGroundHeatExchangers->PastIsRain = state.dataEnvrn->IsRain;
733 0 : state.dataSurfaceGroundHeatExchangers->PastIsSnow = state.dataEnvrn->IsSnow;
734 0 : state.dataSurfaceGroundHeatExchangers->PastOutDryBulbTemp = OutDryBulbTempAt(state, SurfaceHXHeight);
735 0 : state.dataSurfaceGroundHeatExchangers->PastOutWetBulbTemp = OutWetBulbTempAt(state, SurfaceHXHeight);
736 0 : state.dataSurfaceGroundHeatExchangers->PastSkyTemp = state.dataEnvrn->SkyTemp;
737 0 : state.dataSurfaceGroundHeatExchangers->PastWindSpeed = DataEnvironment::WindSpeedAt(state, SurfaceHXHeight);
738 :
739 0 : TempBtm = this->TbtmHistory[1];
740 0 : TempTop = this->TtopHistory[1];
741 0 : OldFluxTop = 1.0e+30;
742 0 : OldFluxBtm = 1.0e+30;
743 0 : OldSourceFlux = 1.0e+30;
744 0 : state.dataSurfaceGroundHeatExchangers->SourceFlux = CalcSourceFlux(state);
745 0 : iter = 0;
746 : while (true) { // iterate to find source flux
747 0 : ++iter;
748 0 : iter1 = 0;
749 : while (true) { // iterate to find surface heat balances
750 0 : ++iter1;
751 : // update top coefficients
752 0 : CalcTopFluxCoefficents(TempBtm, TempTop);
753 : // calc top surface flux
754 0 : FluxTop = this->QtopConstCoef + this->QtopVarCoef * state.dataSurfaceGroundHeatExchangers->SourceFlux;
755 : // calc new surface temps
756 0 : CalcTopSurfTemp(-FluxTop,
757 : TempT,
758 0 : state.dataSurfaceGroundHeatExchangers->PastOutDryBulbTemp,
759 0 : state.dataSurfaceGroundHeatExchangers->PastOutWetBulbTemp,
760 0 : state.dataSurfaceGroundHeatExchangers->PastSkyTemp,
761 0 : state.dataSurfaceGroundHeatExchangers->PastBeamSolarRad,
762 0 : state.dataSurfaceGroundHeatExchangers->PastDifSolarRad,
763 0 : state.dataSurfaceGroundHeatExchangers->PastSolarDirCosVert,
764 0 : state.dataSurfaceGroundHeatExchangers->PastWindSpeed,
765 0 : state.dataSurfaceGroundHeatExchangers->PastIsRain,
766 0 : state.dataSurfaceGroundHeatExchangers->PastIsSnow);
767 : // under-relax
768 0 : TempTop = TempTop * (1.0 - RelaxT) + RelaxT * TempT;
769 : // update bottom coefficients
770 0 : CalcBottomFluxCoefficents(TempBtm, TempTop);
771 0 : FluxBtm = this->QbtmConstCoef + this->QbtmVarCoef * state.dataSurfaceGroundHeatExchangers->SourceFlux;
772 : // convergence test on surface fluxes
773 0 : if (std::abs((OldFluxTop - FluxTop) / OldFluxTop) <= SurfFluxTol && std::abs((OldFluxBtm - FluxBtm) / OldFluxBtm) <= SurfFluxTol)
774 0 : break;
775 :
776 : // calc new surface temps
777 0 : CalcBottomSurfTemp(FluxBtm,
778 : TempB,
779 0 : state.dataSurfaceGroundHeatExchangers->PastOutDryBulbTemp,
780 0 : state.dataSurfaceGroundHeatExchangers->PastOutDryBulbTemp,
781 0 : state.dataEnvrn->GroundTemp[(int)DataEnvironment::GroundTempType::Shallow]);
782 : // under-relax
783 0 : TempBtm = TempBtm * (1.0 - RelaxT) + RelaxT * TempB;
784 : // update flux record
785 0 : OldFluxBtm = FluxBtm;
786 0 : OldFluxTop = FluxTop;
787 :
788 : // Check for non-convergence
789 0 : if (iter1 > Maxiter1) {
790 0 : if (this->ConvErrIndex2 == 0) {
791 0 : ShowWarningMessage(
792 : state,
793 0 : format("CalcSurfaceGroundHeatExchanger=\"{}\", Did not converge (part 2), Iterations={}", this->Name, Maxiter));
794 0 : ShowContinueErrorTimeStamp(state, "");
795 : }
796 0 : ShowRecurringWarningErrorAtEnd(
797 0 : state, "CalcSurfaceGroundHeatExchanger=\"" + this->Name + "\", Did not converge (part 2)", this->ConvErrIndex2);
798 0 : break;
799 : }
800 : }
801 : // update the source temp coefficients and update the source flux
802 0 : CalcSourceTempCoefficents(TempBtm, TempTop);
803 0 : state.dataSurfaceGroundHeatExchangers->SourceFlux = CalcSourceFlux(state);
804 : // check source flux convergence
805 0 : if (std::abs((OldSourceFlux - state.dataSurfaceGroundHeatExchangers->SourceFlux) / (1.0e-20 + OldSourceFlux)) <= SrcFluxTol) break;
806 0 : OldSourceFlux = state.dataSurfaceGroundHeatExchangers->SourceFlux;
807 :
808 : // Check for non-convergence
809 0 : if (iter > Maxiter) {
810 0 : if (this->ConvErrIndex3 == 0) {
811 0 : ShowWarningMessage(
812 0 : state, format("CalcSurfaceGroundHeatExchanger=\"{}\", Did not converge (part 3), Iterations={}", this->Name, Maxiter));
813 0 : ShowContinueErrorTimeStamp(state, "");
814 : }
815 0 : ShowRecurringWarningErrorAtEnd(
816 0 : state, "CalcSurfaceGroundHeatExchanger=\"" + this->Name + "\", Did not converge (part 3)", this->ConvErrIndex3);
817 0 : break;
818 : }
819 : } // end surface heat balance iteration
820 :
821 0 : } else if (!FirstHVACIteration) { // end source flux iteration
822 : // For the rest of the system time steps ...
823 : // update source flux from Twi
824 0 : this->firstTimeThrough = true;
825 0 : state.dataSurfaceGroundHeatExchangers->SourceFlux = this->CalcSourceFlux(state);
826 : }
827 0 : }
828 :
829 0 : void SurfaceGroundHeatExchangerData::CalcBottomFluxCoefficents(Real64 const Tbottom, // current bottom (lower) surface temperature
830 : Real64 const Ttop // current top (upper) surface temperature
831 : )
832 : {
833 :
834 : // AUTHOR Simon Rees
835 : // DATE WRITTEN August 2002
836 : // MODIFIED na
837 : // RE-ENGINEERED na
838 :
839 : // PURPOSE OF THIS SUBROUTINE:
840 : // Calculates current version of constant variable parts of QTF equations.
841 :
842 : // METHODOLOGY EMPLOYED:
843 : // For given current surface temperatures the terms of the QTF equations can be
844 : // grouped into constant terms, and those depending on the current source flux.
845 : // This routine calculates the current coefficient values for the bottom flux
846 : // equation.
847 :
848 : // REFERENCES:
849 : // Strand, R.K. 1995. "Heat Source Transfer Functions and Their Application to
850 : // Low Temperature Radiant Heating Systems", Ph.D. dissertation, University
851 : // of Illinois at Urbana-Champaign, Department of Mechanical and Industrial
852 : // Engineering.
853 :
854 : // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
855 : int Term;
856 :
857 : // add current surface temperatures to history data
858 0 : this->TbtmHistory[0] = Tbottom;
859 0 : this->TtopHistory[0] = Ttop;
860 :
861 : // Bottom Surface Coefficients
862 0 : this->QbtmConstCoef = 0.0;
863 0 : for (Term = 0; Term <= this->NumCTFTerms - 1; ++Term) {
864 :
865 0 : this->QbtmConstCoef += (-this->CTFin[Term] * this->TbtmHistory[Term]) + (this->CTFcross[Term] * this->TtopHistory[Term]) +
866 0 : (this->CTFflux[Term] * this->QbtmHistory[Term]) + (this->CTFSourceIn[Term] * this->QsrcHistory[Term]);
867 : }
868 :
869 : // correct for extra bottom surface flux term
870 0 : this->QbtmConstCoef -= this->CTFSourceIn[0] * this->QsrcHistory[0];
871 : // source flux current coefficient
872 0 : this->QbtmVarCoef = this->CTFSourceIn[0];
873 0 : }
874 :
875 0 : void SurfaceGroundHeatExchangerData::CalcTopFluxCoefficents(Real64 const Tbottom, // current bottom (lower) surface temperature
876 : Real64 const Ttop // current top (upper) surface temperature
877 : )
878 : {
879 :
880 : // AUTHOR Simon Rees
881 : // DATE WRITTEN August 2002
882 : // MODIFIED na
883 : // RE-ENGINEERED na
884 :
885 : // PURPOSE OF THIS SUBROUTINE:
886 : // Calculates current version of constant variable parts of QTF equations.
887 :
888 : // METHODOLOGY EMPLOYED:
889 : // For given current surface temperatures the terms of the QTF equations can be
890 : // grouped into constant terms, and those depending on the current source flux.
891 : // This routine calculates the current coefficient values for the top flux
892 : // equation.
893 :
894 : // REFERENCES:
895 : // Strand, R.K. 1995. "Heat Source Transfer Functions and Their Application to
896 : // Low Temperature Radiant Heating Systems", Ph.D. dissertation, University
897 : // of Illinois at Urbana-Champaign, Department of Mechanical and Industrial
898 : // Engineering.
899 :
900 : // add current surface temperatures to history data
901 0 : this->TbtmHistory[0] = Tbottom;
902 0 : this->TtopHistory[0] = Ttop;
903 :
904 : // Top Surface Coefficients
905 0 : this->QtopConstCoef = 0.0;
906 0 : for (int Term = 0; Term <= this->NumCTFTerms - 1; ++Term) {
907 :
908 0 : this->QtopConstCoef += (this->CTFout[Term] * this->TtopHistory[Term]) - (this->CTFcross[Term] * this->TbtmHistory[Term]) +
909 0 : (this->CTFflux[Term] * this->QtopHistory[Term]) + (this->CTFSourceOut[Term] * this->QsrcHistory[Term]);
910 : }
911 :
912 : // correct for extra top surface flux term
913 0 : this->QtopConstCoef -= (this->CTFSourceOut[0] * this->QsrcHistory[0]);
914 : // surface flux current coefficient
915 0 : this->QtopVarCoef = this->CTFSourceOut[0];
916 0 : }
917 :
918 0 : void SurfaceGroundHeatExchangerData::CalcSourceTempCoefficents(Real64 const Tbottom, // current bottom (lower) surface temperature
919 : Real64 const Ttop // current top (upper) surface temperature
920 : )
921 : {
922 :
923 : // AUTHOR Simon Rees
924 : // DATE WRITTEN August 2002
925 : // MODIFIED na
926 : // RE-ENGINEERED na
927 :
928 : // PURPOSE OF THIS SUBROUTINE:
929 : // Calculates current version of constant variable parts of QTF equations.
930 :
931 : // METHODOLOGY EMPLOYED:
932 : // For given current surface temperatures the terms of the QTF equations can be
933 : // grouped into constant terms, and those depending on the current source flux.
934 : // This routine calculates the current coefficient values for the source temperature
935 : // equation.
936 :
937 : // REFERENCES:
938 : // Strand, R.K. 1995. "Heat Source Transfer Functions and Their Application to
939 : // Low Temperature Radiant Heating Systems", Ph.D. dissertation, University
940 : // of Illinois at Urbana-Champaign, Department of Mechanical and Industrial
941 : // Engineering.
942 :
943 : // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
944 : int Term;
945 :
946 : // add current surface temperatures to history data
947 0 : this->TbtmHistory[0] = Tbottom;
948 0 : this->TtopHistory[0] = Ttop;
949 :
950 0 : this->TsrcConstCoef = 0.0;
951 0 : for (Term = 0; Term <= this->NumCTFTerms - 1; ++Term) {
952 :
953 0 : this->TsrcConstCoef += (this->CTFTSourceIn[Term] * this->TbtmHistory[Term]) + (this->CTFTSourceOut[Term] * this->TtopHistory[Term]) +
954 0 : (this->CTFflux[Term] * this->TsrcHistory[Term]) + (this->CTFTSourceQ[Term] * this->QsrcHistory[Term]);
955 : }
956 :
957 : // correct for extra source flux term
958 0 : this->TsrcConstCoef -= this->CTFTSourceQ[0] * this->QsrcHistory[0];
959 : // source flux current coefficient
960 0 : this->TsrcVarCoef = this->CTFTSourceQ[0];
961 0 : }
962 :
963 0 : Real64 SurfaceGroundHeatExchangerData::CalcSourceFlux(EnergyPlusData &state) // component number
964 : {
965 :
966 : // AUTHOR Simon Rees
967 : // DATE WRITTEN August 2002
968 : // MODIFIED na
969 : // RE-ENGINEERED na
970 :
971 : // PURPOSE OF THIS SUBROUTINE:
972 : // This calculates the source flux given the inlet fluid temperature. A
973 : // heat exchanger analogy is used, with the surface as a 'Fixed' fluid.
974 :
975 : // METHODOLOGY EMPLOYED:
976 :
977 : // REFERENCES:
978 : // Strand, R.K. 1995. "Heat Source Transfer Functions and Their Application to
979 : // Low Temperature Radiant Heating Systems", Ph.D. dissertation, University
980 : // of Illinois at Urbana-Champaign, Department of Mechanical and Industrial
981 : // Engineering.
982 :
983 : // Return value
984 : Real64 CalcSourceFlux;
985 :
986 : // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
987 : Real64 EpsMdotCp; // Epsilon (heat exchanger terminology) times water mass flow rate times water specific heat
988 :
989 : // Effectiveness * Modot * specific heat
990 0 : if (state.dataSurfaceGroundHeatExchangers->FlowRate > 0.0) {
991 0 : EpsMdotCp = CalcHXEffectTerm(state, this->InletTemp, state.dataSurfaceGroundHeatExchangers->FlowRate);
992 : // calc flux
993 0 : CalcSourceFlux = (this->InletTemp - this->TsrcConstCoef) / (this->SurfaceArea / EpsMdotCp + this->TsrcVarCoef);
994 : } else {
995 0 : CalcSourceFlux = 0.0;
996 : }
997 :
998 0 : return CalcSourceFlux;
999 : }
1000 :
1001 0 : void SurfaceGroundHeatExchangerData::UpdateHistories(Real64 const TopFlux, // current top (top) surface flux
1002 : Real64 const BottomFlux, // current bottom (bottom) surface flux
1003 : Real64 const sourceFlux, // current source surface flux
1004 : Real64 const sourceTemp // current source temperature
1005 : )
1006 : {
1007 :
1008 : // AUTHOR Simon Rees
1009 : // DATE WRITTEN August 2002
1010 : // MODIFIED na
1011 : // RE-ENGINEERED na
1012 :
1013 : // PURPOSE OF THIS SUBROUTINE:
1014 : // This is used to update the temperature and flux records for the QTF
1015 : // calculations. This is called at the start of each zone timestep.
1016 :
1017 : // METHODOLOGY EMPLOYED:
1018 : // Just shift along and replace zero index element with current value.
1019 :
1020 : // update top surface temps
1021 0 : this->TtopHistory = eoshiftArray(this->TtopHistory, -1, 0.0);
1022 :
1023 : // update bottom surface temps
1024 0 : this->TbtmHistory = eoshiftArray(this->TbtmHistory, -1, 0.0);
1025 :
1026 : // update bottom surface temps
1027 0 : this->TsrcHistory = eoshiftArray(this->TsrcHistory, -1, 0.0);
1028 0 : this->TsrcHistory[1] = sourceTemp;
1029 :
1030 : // update bottom surface fluxes
1031 0 : this->QbtmHistory = eoshiftArray(this->QbtmHistory, -1, 0.0);
1032 0 : this->QbtmHistory[1] = BottomFlux;
1033 :
1034 : // update bottom surface fluxes
1035 0 : this->QtopHistory = eoshiftArray(this->QtopHistory, -1, 0.0);
1036 0 : this->QtopHistory[1] = TopFlux;
1037 :
1038 : // update bottom surface fluxes
1039 0 : this->QsrcHistory = eoshiftArray(this->QsrcHistory, -1, 0.0);
1040 0 : this->QsrcHistory[1] = sourceFlux;
1041 0 : }
1042 :
1043 0 : Real64 SurfaceGroundHeatExchangerData::CalcHXEffectTerm(EnergyPlusData &state,
1044 : Real64 const Temperature, // Temperature of water entering the surface, in C
1045 : Real64 const WaterMassFlow // Mass flow rate, in kg/s
1046 : )
1047 : {
1048 :
1049 : // SUBROUTINE INFORMATION:
1050 : // AUTHOR Rick Strand
1051 : // DATE WRITTEN December 2000
1052 : // MODIFIED Simon Rees, August 2002
1053 : // RE-ENGINEERED na
1054 :
1055 : // PURPOSE OF THIS SUBROUTINE:
1056 : // This subroutine calculates the "heat exchanger"
1057 : // effectiveness term. This is equal to the mass flow rate of water
1058 : // times the specific heat of water times the effectiveness of
1059 : // the surface heat exchanger. This routine is adapted from that in
1060 : // the low temp radiant surface model.
1061 :
1062 : // METHODOLOGY EMPLOYED:
1063 : // Assumes that the only REAL(r64) heat transfer term that we have to
1064 : // deal with is the convection from the water to the tube. The
1065 : // other assumptions are that the tube bottom surface temperature
1066 : // is equal to the "source location temperature" and that it is
1067 : // a CONSTANT throughout the surface.
1068 :
1069 : // REFERENCES:
1070 : // See RadiantSystemLowTemp module.
1071 : // Property data for water shown below as parameters taken from
1072 : // Incropera and DeWitt, Introduction to Heat Transfer, Table A.6.
1073 : // Heat exchanger information also from Incropera and DeWitt.
1074 : // Code based loosely on code from IBLAST program (research version)
1075 :
1076 : // Return value
1077 : Real64 CalcHXEffectTerm;
1078 :
1079 0 : Real64 constexpr MaxLaminarRe(2300.0); // Maximum Reynolds number for laminar flow
1080 0 : int constexpr NumOfPropDivisions(13); // intervals in property correlation
1081 : static constexpr std::array<Real64, NumOfPropDivisions> Temps = {
1082 : 1.85, 6.85, 11.85, 16.85, 21.85, 26.85, 31.85, 36.85, 41.85, 46.85, 51.85, 56.85, 61.85}; // Temperature, in C
1083 : static constexpr std::array<Real64, NumOfPropDivisions> Mu = {0.001652,
1084 : 0.001422,
1085 : 0.001225,
1086 : 0.00108,
1087 : 0.000959,
1088 : 0.000855,
1089 : 0.000769,
1090 : 0.000695,
1091 : 0.000631,
1092 : 0.000577,
1093 : 0.000528,
1094 : 0.000489,
1095 : 0.000453}; // Viscosity, in Ns/m2
1096 : static constexpr std::array<Real64, NumOfPropDivisions> Conductivity = {
1097 : 0.574, 0.582, 0.590, 0.598, 0.606, 0.613, 0.620, 0.628, 0.634, 0.640, 0.645, 0.650, 0.656}; // Conductivity, in W/mK
1098 : static constexpr std::array<Real64, NumOfPropDivisions> Pr = {
1099 : 12.22, 10.26, 8.81, 7.56, 6.62, 5.83, 5.20, 4.62, 4.16, 3.77, 3.42, 3.15, 2.88}; // Prandtl number (dimensionless)
1100 0 : int constexpr WaterIndex(1);
1101 : static constexpr std::string_view RoutineName("SurfaceGroundHeatExchanger:CalcHXEffectTerm");
1102 :
1103 : // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
1104 : int Index;
1105 : Real64 InterpFrac;
1106 : Real64 NuD;
1107 : Real64 ReD;
1108 : Real64 NTU;
1109 : Real64 CpWater;
1110 : Real64 Kactual;
1111 : Real64 MUactual;
1112 : Real64 PRactual;
1113 : Real64 PipeLength;
1114 :
1115 : // First find out where we are in the range of temperatures
1116 0 : Index = 0;
1117 0 : while (Index < NumOfPropDivisions) {
1118 0 : if (Temperature < Temps[Index]) break; // DO loop
1119 0 : ++Index;
1120 : }
1121 :
1122 : // Initialize thermal properties of water
1123 0 : if (Index == 0) {
1124 0 : MUactual = Mu[Index];
1125 0 : Kactual = Conductivity[Index];
1126 0 : PRactual = Pr[Index];
1127 0 : } else if (Index > NumOfPropDivisions - 1) {
1128 0 : Index = NumOfPropDivisions - 1;
1129 0 : MUactual = Mu[Index];
1130 0 : Kactual = Conductivity[Index];
1131 0 : PRactual = Pr[Index];
1132 : } else {
1133 0 : InterpFrac = (Temperature - Temps[Index - 1]) / (Temps[Index] - Temps[Index - 1]);
1134 0 : MUactual = Mu[Index - 1] + InterpFrac * (Mu[Index] - Mu[Index - 1]);
1135 0 : Kactual = Conductivity[Index - 1] + InterpFrac * (Conductivity[Index] - Conductivity[Index - 1]);
1136 0 : PRactual = Pr[Index - 1] + InterpFrac * (Pr[Index] - Pr[Index - 1]);
1137 : }
1138 : // arguments are glycol name, temperature, and concentration
1139 0 : if (Temperature < 0.0) { // check if fluid is water and would be freezing
1140 0 : if (state.dataPlnt->PlantLoop(this->plantLoc.loopNum).FluidIndex == WaterIndex) {
1141 0 : if (this->FrozenErrIndex1 == 0) {
1142 0 : ShowWarningMessage(
1143 : state,
1144 0 : format("GroundHeatExchanger:Surface=\"{}\", water is frozen; Model not valid. Calculated Water Temperature=[{:.2R}] C",
1145 0 : this->Name,
1146 0 : this->InletTemp));
1147 0 : ShowContinueErrorTimeStamp(state, "");
1148 : }
1149 0 : ShowRecurringWarningErrorAtEnd(state,
1150 0 : "GroundHeatExchanger:Surface=\"" + this->Name + "\", water is frozen",
1151 0 : this->FrozenErrIndex1,
1152 0 : this->InletTemp,
1153 0 : this->InletTemp,
1154 : _,
1155 : "[C]",
1156 : "[C]");
1157 0 : this->InletTemp = max(this->InletTemp, 0.0);
1158 : }
1159 : }
1160 0 : CpWater = state.dataPlnt->PlantLoop(this->plantLoc.loopNum).glycol->getSpecificHeat(state, Temperature, RoutineName);
1161 :
1162 : // Calculate the Reynold's number from RE=(4*Mdot)/(Pi*Mu*Diameter)
1163 0 : ReD = 4.0 * WaterMassFlow / (Constant::Pi * MUactual * this->TubeDiameter * this->TubeCircuits);
1164 :
1165 : // Calculate the Nusselt number based on what flow regime one is in
1166 0 : if (ReD >= MaxLaminarRe) { // Turbulent flow --> use Colburn equation
1167 0 : NuD = 0.023 * std::pow(ReD, 0.8) * std::pow(PRactual, 1.0 / 3.0);
1168 : } else { // Laminar flow --> use constant surface temperature relation
1169 0 : NuD = 3.66;
1170 : }
1171 : // Calculate the NTU parameter
1172 : // NTU = UA/[(Mdot*Cp)min]
1173 : // where: U = h (convection coefficient) and h = (k)(Nu)/D
1174 : // A = Pi*D*TubeLength
1175 : // NTU = PI * Kactual * NuD * SurfaceGHE(SurfaceGHENum)%TubeLength / (WaterMassFlow * CpWater)
1176 :
1177 0 : PipeLength = this->SurfaceLength * this->SurfaceWidth / this->TubeSpacing;
1178 :
1179 0 : NTU = Constant::Pi * Kactual * NuD * PipeLength / (WaterMassFlow * CpWater);
1180 : // Calculate Epsilon*MassFlowRate*Cp
1181 0 : if (-NTU >= DataPrecisionGlobals::EXP_LowerLimit) {
1182 0 : CalcHXEffectTerm = (1.0 - std::exp(-NTU)) * WaterMassFlow * CpWater;
1183 : } else {
1184 0 : CalcHXEffectTerm = 1.0 * WaterMassFlow * CpWater;
1185 : }
1186 :
1187 0 : return CalcHXEffectTerm;
1188 : }
1189 :
1190 0 : void SurfaceGroundHeatExchangerData::CalcTopSurfTemp(Real64 const FluxTop, // top surface flux
1191 : Real64 &TempTop, // top surface temperature
1192 : Real64 const ThisDryBulb, // dry bulb temperature
1193 : Real64 const ThisWetBulb, // wet bulb temperature
1194 : Real64 const ThisSkyTemp, // sky temperature
1195 : Real64 const ThisBeamSolarRad, // beam solar radiation
1196 : Real64 const ThisDifSolarRad, // diffuse solar radiation
1197 : Real64 const ThisSolarDirCosVert, // vertical component of solar normal
1198 : Real64 const ThisWindSpeed, // wind speed
1199 : bool const ThisIsRain, // rain flag
1200 : bool const ThisIsSnow // snow flag
1201 : )
1202 : {
1203 :
1204 : // AUTHOR Simon Rees
1205 : // DATE WRITTEN August 2002
1206 : // MODIFIED na
1207 : // RE-ENGINEERED na
1208 :
1209 : // PURPOSE OF THIS SUBROUTINE:
1210 : // This subroutine is used to calculate the top surface
1211 : // temperature for the given surface flux.
1212 :
1213 : // METHODOLOGY EMPLOYED:
1214 : // calc surface heat balance
1215 :
1216 : // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
1217 : Real64 ConvCoef; // convection coefficient
1218 : Real64 RadCoef; // radiation coefficient
1219 : Real64 ExternalTemp; // external environmental temp - drybulb or wetbulb
1220 : Real64 OldSurfTemp; // previous surface temperature
1221 : Real64 QSolAbsorbed; // absorbed solar flux
1222 : Real64 SurfTempAbs; // absolute value of surface temp
1223 : Real64 SkyTempAbs; // absolute value of sky temp
1224 :
1225 : // make a surface heat balance and solve for temperature
1226 :
1227 : // set appropriate external temp
1228 0 : if (ThisIsSnow || ThisIsRain) {
1229 0 : ExternalTemp = ThisWetBulb;
1230 : } else { // normal dry conditions
1231 0 : ExternalTemp = ThisDryBulb;
1232 : }
1233 :
1234 : // set previous surface temp
1235 0 : OldSurfTemp = this->TtopHistory[1];
1236 : // absolute temperatures
1237 0 : SurfTempAbs = OldSurfTemp + Constant::Kelvin;
1238 0 : SkyTempAbs = ThisSkyTemp + Constant::Kelvin;
1239 :
1240 : // ASHRAE simple convection coefficient model for external surfaces.
1241 0 : ConvCoef = Convect::CalcASHRAESimpExtConvCoeff(this->TopRoughness, ThisWindSpeed);
1242 : // radiation coefficient using surf temp from past time step
1243 0 : if (std::abs(SurfTempAbs - SkyTempAbs) > SmallNum) {
1244 0 : RadCoef = StefBoltzmann * this->TopThermAbs * (pow_4(SurfTempAbs) - pow_4(SkyTempAbs)) / (SurfTempAbs - SkyTempAbs);
1245 : } else {
1246 0 : RadCoef = 0.0;
1247 : }
1248 :
1249 : // total absorbed solar - no ground solar
1250 0 : QSolAbsorbed = this->TopSolarAbs * (max(ThisSolarDirCosVert, 0.0) * ThisBeamSolarRad + ThisDifSolarRad);
1251 :
1252 : // solve for temperature
1253 0 : TempTop = (FluxTop + ConvCoef * ExternalTemp + RadCoef * ThisSkyTemp + QSolAbsorbed) / (ConvCoef + RadCoef);
1254 0 : }
1255 :
1256 0 : void SurfaceGroundHeatExchangerData::CalcBottomSurfTemp(Real64 const FluxBtm, // bottom surface flux
1257 : Real64 &TempBtm, // bottom surface temperature
1258 : Real64 const ThisDryBulb, // dry bulb temperature
1259 : Real64 const ThisWindSpeed, // wind speed
1260 : Real64 const ThisGroundTemp // ground temperature
1261 : )
1262 : {
1263 :
1264 : // AUTHOR Simon Rees
1265 : // DATE WRITTEN August 2002
1266 : // MODIFIED na
1267 : // RE-ENGINEERED na
1268 :
1269 : // PURPOSE OF THIS SUBROUTINE:
1270 : // This subroutine is used to calculate the bottom surface
1271 : // temperature for the given surface flux.
1272 :
1273 : // METHODOLOGY EMPLOYED:
1274 : // calc surface heat balances
1275 :
1276 : // Using/Aliasing
1277 :
1278 : Real64 ConvCoef; // convection coefficient
1279 : Real64 RadCoef; // radiation coefficient
1280 : Real64 OldSurfTemp; // previous surface temperature
1281 : Real64 SurfTempAbs; // absolute value of surface temp
1282 : Real64 ExtTempAbs; // absolute value of sky temp
1283 :
1284 0 : if (this->LowerSurfCond == SurfCond_Exposed) {
1285 :
1286 : // make a surface heat balance and solve for temperature
1287 0 : OldSurfTemp = this->TbtmHistory[1];
1288 : // absolute temperatures
1289 0 : SurfTempAbs = OldSurfTemp + Constant::Kelvin;
1290 0 : ExtTempAbs = ThisDryBulb + Constant::Kelvin;
1291 :
1292 : // ASHRAE simple convection coefficient model for external surfaces.
1293 0 : ConvCoef = Convect::CalcASHRAESimpExtConvCoeff(this->TopRoughness, ThisWindSpeed);
1294 :
1295 : // radiation coefficient using surf temp from past time step
1296 0 : if (std::abs(SurfTempAbs - ExtTempAbs) > SmallNum) {
1297 0 : RadCoef = StefBoltzmann * this->TopThermAbs * (pow_4(SurfTempAbs) - pow_4(ExtTempAbs)) / (SurfTempAbs - ExtTempAbs);
1298 : } else {
1299 0 : RadCoef = 0.0;
1300 : }
1301 :
1302 : // total absorbed solar - no ground solar
1303 0 : TempBtm = (FluxBtm + ConvCoef * ThisDryBulb + RadCoef * ThisDryBulb) / (ConvCoef + RadCoef);
1304 :
1305 : } else { // ground coupled
1306 : // just use the supplied ground temperature
1307 0 : TempBtm = ThisGroundTemp;
1308 : }
1309 0 : }
1310 :
1311 0 : void SurfaceGroundHeatExchangerData::UpdateSurfaceGroundHeatExchngr(EnergyPlusData &state) // Index for the surface
1312 : {
1313 :
1314 : // SUBROUTINE INFORMATION:
1315 : // AUTHOR Simon Rees
1316 : // DATE WRITTEN August 2002
1317 : // MODIFIED na
1318 : // RE-ENGINEERED na
1319 :
1320 : // PURPOSE OF THIS SUBROUTINE:
1321 : // This subroutine does any updating that needs to be done for surface
1322 : // ground heat exchangers. One of the most important functions of
1323 : // this routine is to update the average heat source/sink for a
1324 : // particular system over the various system time steps that make up
1325 : // the zone time step. This routine must also set the outlet water conditions.
1326 :
1327 : // METHODOLOGY EMPLOYED:
1328 : // For the source/sink average update, if the system time step elapsed
1329 : // is still what it used to be, then either we are still iterating or
1330 : // we had to go back and shorten the time step. As a result, we have
1331 : // to subtract out the previous value that we added. If the system
1332 : // time step elapsed is different, then we just need to add the new
1333 : // values to the running average.
1334 :
1335 : // Using/Aliasing
1336 0 : Real64 SysTimeElapsed = state.dataHVACGlobal->SysTimeElapsed;
1337 0 : Real64 TimeStepSys = state.dataHVACGlobal->TimeStepSys;
1338 : using PlantUtilities::SafeCopyPlantNode;
1339 :
1340 : // SUBROUTINE PARAMETER DEFINITIONS:
1341 : static constexpr std::string_view RoutineName("SurfaceGroundHeatExchanger:Update");
1342 :
1343 : // SUBROUTINE LOCAL VARIABLE DECLARATIONS:
1344 : Real64 CpFluid; // Specific heat of working fluid
1345 :
1346 : // update flux
1347 0 : this->QSrc = state.dataSurfaceGroundHeatExchangers->SourceFlux;
1348 :
1349 0 : if (this->LastSysTimeElapsed == SysTimeElapsed) { // only update in normal mode
1350 : // Still iterating or reducing system time step, so subtract old values which were not valid
1351 0 : this->QSrcAvg -= this->LastQSrc * this->LastTimeStepSys / state.dataGlobal->TimeStepZone;
1352 :
1353 : // Update the running average and the "last" values with the current values of the appropriate variables
1354 0 : this->QSrcAvg += this->QSrc * TimeStepSys / state.dataGlobal->TimeStepZone;
1355 :
1356 0 : this->LastQSrc = state.dataSurfaceGroundHeatExchangers->SourceFlux;
1357 0 : this->LastSysTimeElapsed = SysTimeElapsed;
1358 0 : this->LastTimeStepSys = TimeStepSys;
1359 : }
1360 :
1361 : // Calculate the water side outlet conditions and set the
1362 : // appropriate conditions on the correct HVAC node.
1363 0 : if (state.dataPlnt->PlantLoop(this->plantLoc.loopNum).FluidName == "WATER") {
1364 0 : if (InletTemp < 0.0) {
1365 0 : ShowRecurringWarningErrorAtEnd(state,
1366 0 : "UpdateSurfaceGroundHeatExchngr: Water is frozen in Surf HX=" + this->Name,
1367 0 : this->FrozenErrIndex2,
1368 0 : this->InletTemp,
1369 0 : this->InletTemp);
1370 : }
1371 0 : this->InletTemp = max(this->InletTemp, 0.0);
1372 : }
1373 :
1374 0 : CpFluid = state.dataPlnt->PlantLoop(this->plantLoc.loopNum).glycol->getSpecificHeat(state, this->InletTemp, RoutineName);
1375 :
1376 0 : SafeCopyPlantNode(state, this->InletNodeNum, this->OutletNodeNum);
1377 : // check for flow
1378 0 : if ((CpFluid > 0.0) && (state.dataSurfaceGroundHeatExchangers->FlowRate > 0.0)) {
1379 0 : state.dataLoopNodes->Node(this->OutletNodeNum).Temp = this->InletTemp - this->SurfaceArea *
1380 0 : state.dataSurfaceGroundHeatExchangers->SourceFlux /
1381 0 : (state.dataSurfaceGroundHeatExchangers->FlowRate * CpFluid);
1382 0 : state.dataLoopNodes->Node(this->OutletNodeNum).Enthalpy = state.dataLoopNodes->Node(this->OutletNodeNum).Temp * CpFluid;
1383 : }
1384 0 : }
1385 :
1386 0 : void SurfaceGroundHeatExchangerData::ReportSurfaceGroundHeatExchngr(EnergyPlusData &state) // Index for the surface under consideration
1387 : {
1388 :
1389 : // SUBROUTINE INFORMATION:
1390 : // AUTHOR Simon Rees
1391 : // DATE WRITTEN August 2002
1392 : // MODIFIED na
1393 : // RE-ENGINEERED na
1394 :
1395 : // PURPOSE OF THIS SUBROUTINE:
1396 : // This subroutine simply produces output for Surface ground heat exchangers
1397 :
1398 : // Using/Aliasing
1399 0 : Real64 TimeStepSysSec = state.dataHVACGlobal->TimeStepSysSec;
1400 :
1401 : // update flows and temps from node data
1402 0 : this->InletTemp = state.dataLoopNodes->Node(this->InletNodeNum).Temp;
1403 0 : this->OutletTemp = state.dataLoopNodes->Node(this->OutletNodeNum).Temp;
1404 0 : this->MassFlowRate = state.dataLoopNodes->Node(this->InletNodeNum).MassFlowRate;
1405 :
1406 : // update other variables from module variables
1407 0 : this->HeatTransferRate = state.dataSurfaceGroundHeatExchangers->SourceFlux * this->SurfaceArea;
1408 0 : this->SurfHeatTransferRate =
1409 0 : this->SurfaceArea * (state.dataSurfaceGroundHeatExchangers->TopSurfFlux + state.dataSurfaceGroundHeatExchangers->BtmSurfFlux);
1410 0 : this->Energy = state.dataSurfaceGroundHeatExchangers->SourceFlux * this->SurfaceArea * TimeStepSysSec;
1411 0 : this->TopSurfaceTemp = state.dataSurfaceGroundHeatExchangers->TopSurfTemp;
1412 0 : this->BtmSurfaceTemp = state.dataSurfaceGroundHeatExchangers->BtmSurfTemp;
1413 0 : this->TopSurfaceFlux = state.dataSurfaceGroundHeatExchangers->TopSurfFlux;
1414 0 : this->BtmSurfaceFlux = state.dataSurfaceGroundHeatExchangers->BtmSurfFlux;
1415 0 : this->SurfEnergy =
1416 0 : SurfaceArea * (state.dataSurfaceGroundHeatExchangers->TopSurfFlux + state.dataSurfaceGroundHeatExchangers->BtmSurfFlux) * TimeStepSysSec;
1417 0 : }
1418 0 : void SurfaceGroundHeatExchangerData::oneTimeInit_new(EnergyPlusData &state)
1419 : {
1420 :
1421 : using PlantUtilities::InitComponentNodes;
1422 : using PlantUtilities::RegisterPlantCompDesignFlow;
1423 : using PlantUtilities::ScanPlantLoopsForObject;
1424 :
1425 : // SUBROUTINE PARAMETER DEFINITIONS:
1426 0 : Real64 constexpr DesignVelocity(0.5); // Hypothetical design max pipe velocity [m/s]
1427 : Real64 rho; // local fluid density
1428 : bool errFlag;
1429 0 : static std::string const RoutineName("InitSurfaceGroundHeatExchanger");
1430 :
1431 : // Locate the hx on the plant loops for later usage
1432 0 : errFlag = false;
1433 0 : ScanPlantLoopsForObject(state, this->Name, DataPlant::PlantEquipmentType::GrndHtExchgSurface, this->plantLoc, errFlag, _, _, _, _, _);
1434 :
1435 0 : if (errFlag) {
1436 0 : ShowFatalError(state, "InitSurfaceGroundHeatExchanger: Program terminated due to previous condition(s).");
1437 : }
1438 0 : rho = state.dataPlnt->PlantLoop(this->plantLoc.loopNum).glycol->getDensity(state, 0.0, RoutineName);
1439 0 : this->DesignMassFlowRate = Constant::Pi / 4.0 * pow_2(this->TubeDiameter) * DesignVelocity * rho * this->TubeCircuits;
1440 0 : InitComponentNodes(state, 0.0, this->DesignMassFlowRate, this->InletNodeNum, this->OutletNodeNum);
1441 0 : RegisterPlantCompDesignFlow(state, this->InletNodeNum, this->DesignMassFlowRate / rho);
1442 0 : }
1443 0 : void SurfaceGroundHeatExchangerData::oneTimeInit([[maybe_unused]] EnergyPlusData &state)
1444 : {
1445 0 : }
1446 :
1447 : } // namespace SurfaceGroundHeatExchanger
1448 :
1449 : } // namespace EnergyPlus
|